

Horizon 2020 Societal challenge 5
 Climate action, environment, resource

 Efficiency and raw materials

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement NO 689150 SIM4NEXUS

D4.6: Report on testing, security

and scalability

LEAD AUTHOR: Marc Bonazountas & Pelagia Koutsantoni (EPSILON)

OTHER AUTHORS: Lluis Echeverria, Xavier Domingo, Marcel Ortiz, Mehdi Khoury

DATE: 06-12-2019

2

PROJECT
Sustainable Integrated Management FOR the NEXUS of water-land-food-energy-
climate for a resource-efficient Europe (SIM4NEXUS)

PROJECT NUMBER 689150

DELIVERABLE D4.6: Report on testing, security and scalability

WP NAME/WP NUMBER Serious Game development and testing / WP4

TASK Tasks 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7

VERSION 5.0

DISSEMINATION LEVEL Public

DATE 30/06/2020

LEAD BENEFICIARY EPSILON

RESPONSIBLE AUTHOR Marc Bonazountas (EPSILON) & Pelagia Koutsantoni (EPSILON)

AUTHORS
Xavier Domingo (EURECAT), Lluís Echeverria Rovira (EURECAT),

Marcel Ortiz (EURECAT), Mehdi Khoury (UNEXE), Ioannis Gitas (Auth),

Stefanos Papaiodanidis (Auth)

REVIEWER Lluís Echeverria Rovira (EURECAT)

COMMENTS

DOCUMENT HISTORY

VERSION INITIALS/NAME DATE COMMENTS-DESCRIPTION OF ACTIONS

1.0 LLUIS ECHEVERRIA 15/05/2020 TOC

1.1 MARCEL ORTIZ 16/05/2020 SECTIONS 3.1 AND 3.2

1.2 MEHDI KHOURY 16/05/2020 SECTIONS 3.4 AND 3.5

1.3 PELAGIA KOUTSANTONI 22/05/2020 HW RESOURCES AND USER FEEDBACK

1.4 LLUÍS ECHEVERRIA 23/05/2020 INTEGRATION CENTRE

1.5 MARCEL ORTIZ 25/05/2020 TESTING OF THE SYSTEM

2.0 PELAGIA KOUTSANTONI 26/05/2020 INTRODUCTION AND CONCLUSIONS

2.1 LLUIS ECHEVERRIA 27/06/2020 REVIEW

3.0 XAVIER DOMINGO 28/06/2020 REVIEW

3.1 PELAGIA KOUTSANTONI 30/06/2020 FINAL REVIEW

4.0 PELAGIA KOUTSANTONI 27/07/2020 SECTION 5

5.0 LLUÍS ECHEVERRIA 06/11/2020 COMMENTS REVIEW

3

5.1 PELAGIA KOUTSANTONI 26/11/2020 COMMENTS REVIEW

Addressing revision comments

Comment Response

The executive summary should be updated also including

the results and conclusions from the section 5 on

SIM4NEXUS SPACE, which has been included in last version

of this deliverable. Also update sentence “The final section

of this document summarizes the first users’ feedback ….”.

Executive summary is updated.

In the summary and section 5 an operational link to the

SIM4NEXUS SPACE website should be included.

SIM4NEXUS SPACE link is now

operational.

Editorial - corrections needed on Pg 67 “¡Error! No se

encuentra el origen de la referencia.. » and « and to

evaluate the out (?) produced for year 2019”

Corrected. Added link to Figure

23

4

Table of Contents

Executive summary ... 8

Glossary / Acronyms ... 10

1. Introduction .. 12

1.1 Structure of the document .. 12

2. The Integration Centre .. 14

2.1 Architecture ... 17

2.1.1 Proxy ... 19

2.1.2 Environments ... 20

2.2 Hardware resources ... 21

2.3 Deployment ... 22

3. Testing of the system .. 24

3.1 Global components ... 26

3.1.1 Game Progression Test ... 27

3.1.2 Game Simulation Test ... 30

3.1.3 Game Data Test .. 35

3.2 Local components.. 40

3.2.1 Coordination Module Test ... 44

3.2.2 Data Access Module Test .. 49

3.3 Load testing ... 53

3.4 Browsers compatibility .. 59

3.5 Screen resolutions ... 59

3.6 Security ... 61

3.6.1 Login System .. 61

3.6.2 HTTPS ... 61

3.7 Resilience ... 61

3.8 Scalability ... 62

3.9 Interoperability .. 63

5

4. User feedback .. 64

5. SIM4NEXUS - SPACE .. 68

5.1 Introduction ... 68

5.2 Methodology ... 69

5.3 Satellite data and products specification ... 69

5.3.1 Evapotranspiration .. 69

5.3.2 Population .. 70

5.3.3 Basin surface .. 70

5.3.4 Land cover... 71

5.3.5 Additional satellite data... 71

5.3.6 Data preparation .. 71

5.4 Application of the SDM .. 77

5.5 Results & Comments ... 78

5.6 References ... 80

Conclusions.. 83

6

Figures

Figure 1. S4N SG Architecture.. 14

Figure 2. Gitlab repository interface showing different code branches. 16

Figure 3. S4N Integration Centre architecture .. 18

Figure 4. Reverse proxy concept .. 19

Figure 5: Serious Game tool Architecture. ... 24

Figure 6: Simplified Serious Game Architecture connections ... 26

Figure 7: Game Simulation testing process.. 32

Figure 8: Game Data testing process... 36

Figure 9: Game Data alternative testing process ... 37

Figure 10: Serious Game flux with exceptions ... 40

Figure 11: Successful Serious Game flux ... 41

Figure 12: Serious Game Component-based Tests architecture .. 42

Figure 13: Credentials System implication in general execution flux ... 46

Figure 14: Data Access Module Test execution flux ... 51

Figure 15: Serious Game GUI flux of interaction with workload heatmap 53

Figure 16: Load Test flux of execution .. 54

Figure 17. Map view ... 60

Figure 18. Map view ... 60

Figure 19: Response of engagement to the Serious Game .. 64

Figure 20: Response of learning impact of the S4N Serious Game... 65

Figure 21: Response of potential of the use of S4N SG for learning purposes 65

Figure 22: Response of potential of the use of S4N SG for learning purposes 66

Figure 23. S4N SG Ranking Page ... 67

Figure 24: The S4N-Space Concept .. 68

Figure 25: Methodology Workflow .. 69

Figure 26: Map of Sardinia with the selected CORINE classes .. 72

Figure 27: Snapshot of classification & validation carried out on Google Earth Engine 73

Figure 28: Monthly actual evapotranspiration maps for the year 2019 75

Figure 29: Population map of Sardinia for the year of 2019 .. 76

Figure 30: Basins contributing to the largest water bodies .. 77

Figure 31: Reservoir stock calculated from standard inputs .. 79

Figure 32: Reservoir stock calculated from satellite derived inputs .. 79

Figure 33: Standard and satellite derived inputs comparison ... 79

file:///Z:/2_DOMAINS/ENVIRONMENT_GMES_RISKS/1509_SIM4NEXUS/03_DELIVERABLES/WP4-Serious%20Game%20development%20and%20testing/D4.6_Report%20on%20testing,%20security,%20and%20scalability/D4.6_v4.docx%23_Toc46764394

7

Tables

Table 1. S4N Service URL locations .. 20

Table 2. S4N database services .. 20

Table 3: Game Progression Test arguments .. 27

Table 4: Game Progression Test Steps .. 28

Table 5: Game Progression Test outcomes .. 28

Table 6: Game Simulation Test arguments .. 31

Table 7: Example of simulation test arguments ... 31

Table 8: Game Simulation Test endpoints .. 32

Table 9: Game Simulation Test outcomes ... 33

Table 10: Game Data Test arguments ... 35

Table 11: Game Data Test steps ... 38

Table 12: Game Data Test outcomes .. 38

Table 13: Serious Game systems exceptions ... 43

Table 14: Coordination Module Test steps ... 44

Table 15: Coordination Module Test arguments ... 45

Table 16: Initialization Step request parameters ... 46

Table 17: Data Access Module test arguments .. 49

Table 18: findBySessionId endpoint specification ... 50

Table 19: Data Access Module Test outcomes ... 52

Table 20: Serious Game user actions workload analysis ... 53

Table 21: Load Test arguments ... 54

Table 22: Initialization Load Test specification ... 55

Table 23: Full Load Test specification ... 57

Table 24: SDM variables - satellite products correspondence .. 69

Table 2: SDM variables – CORINE classes correspondence .. 72

Table 26: Classification overall accuracy .. 73

Table 27: Total area for each class calculated from the classified images 74

Table 28: Reservoir stock calculated from standard and satellite derived inputs 78

8

Executive summary

The development of the SIM4NEXUS Serious Game (SG) platform reached an important

achievement, and is considered to be finished, thanks to the implementation and integration

of its four main components through the S4N Integration Centre: i) the Graphical User Interface

(GUI), ii) the Knowledge Elicitation Engine (KEE), iii) the SIM4NEXUS Database and iv) the System

Dynamic Models Engine (SDM Engine). Each one of these elements has an essential role in the

Game system and its crucial for the correct behaviour of the tool.

Five Case Studies have been integrated, Greece, Azerbaijan, Latvia, the Netherlands and the

southwest of the UK, thus making possible the interaction with them through the GUI and the

final test to validate the expected and correct behaviour of each one. In parallel, the Global

Case Study has developed a demo tool which can be accessed through the S4N SG platform.

The present document describes, how the S4N Integration Centre is organized and deployed

to coordinate the S4N platform and all the validation tasks implemented to ensure a high-

quality system in terms of availability, capacity, interoperability, performance, reliability,

robustness, safety, security, resilience and usability.

Addditionally, this document summarizes the first users’ feedback collected during different

training sessions in order to identify possible issues related to the S4N SG.

As proof, the latest version of the Serious Game GUI and the underlying connected KEE, S4N

database and SDM Engine are available and free to play at this URL:

https://seriousgame.sim4nexus.eu/.

The final section of this document presents the analysis procedures and the results of the

SIM4NEXUS-Space task. SIM4NEXUS-SPACE aims to automatize the population of SDM through

SDM data input collection using global satellite-based data inventories. The first results are also

included and are very promising.

https://seriousgame.sim4nexus.eu/

9

Changes with respect to the DoA

No changes.

Dissemination and uptake

This report is public, so it is accessible for everyone. However, the specific targeted audience

of this report are the beneficiaries of the project.

Short Summary of results

The SIM4NEXUS Serious Game tool has been successfully implemented and is ready to be

accessed by the players. The present report describes in a detailed way the development of

the S4N Integration Centre, which coordinates the S4N platform, and all the validation tasks

that have been implemented to ensure a high-quality system in terms of availability, capacity,

interoperability, performance, reliability, robustness, safety, security, resilience and usability.

Evidence of accomplishment

The latest alpha version of the Serious Game is available and free to play at this URL:

http://seriousgame.sim4nexus.eu

http://seriousgame.sim4nexus.eu/

10

Glossary / Acronyms

Term EXPLANATION / MEANING

API Application Programming Interface

CS Case Study

DSS Decision Support System

GUI Graphical User Interface

IC Integration Centre

IE Inference Engine

JWT Json Web Token

KEE Knowledge Elicitation Engine

ML Machine Learning

OGC Open Geospatial Consortium

RFC Request For Comments

RL Reinforcement Learning

S4N Sim4nexus

SDM System Dynamic Model

SOA Service-Oriented Architecture

SR Serious Game

SR Semantic Repository

UI User Interface

UK United Kingdom

URL Uniform Resource Locator

WP Work Package

XML Extensible Mark-Up Language

ET Evapotranspiration

USGS United States Geological Survey

CLC CORINE Land Cover

MSI Multi Spectral Instrument

OLI Operational Land Imager

11

RF Random Forests

SVM Support Vector Machines

NDWI Normalized Difference Water Index

BSI Bare Soil Index

EVI Enhanced Vegetation Index

MCARI Modified Chlorophyll Absorption In Reflectance Index

12

1. Introduction

The SIM4NEXUS Serious Game platform has been developed and six Case Studies have been

integrated, five as a Serious Games (Greece, Azerbaijan, Latvia, United Kingdoms and the

Netherlands) and a last one, the Global Case Study, as a demonstration tool.

During the project, the different modules that compose the platform have been designed,

developed, deployed and tested through the Integration Centre (IC). It acts as an agile

monitoring and management tool to provide and ensure the correct quality and availability

of the different S4N SG software modules.

The design and development of the S4N SG have been documented in Deliverable 4.5 and

will not be covered in the present text but, probably, some of the developments and modules

will be referenced.

The deployment has been conducted through Docker 1 technology, which simplifies and

facilitates these kinds of procedures whilst allowing isolation and independence of the base

Operative Systems and the underlying Hardware.

In parallel, throughout the progress of the development of the project, the different

implementations have been specifically tested and validated with the aim of finally delivering

an excellent outcomes thanks to the achievement of a high QoS in data pipelines and

processing services between S4N clients and the cloud components, and seamless

communication between all software components in integration activities.

The S4N SG has been presented and experienced by different final users during diverse training

sessions and their feedback have been collected and analyzed with the intention of

identifying possible improvements and/or problems (as an extension of the testing tasks) and

to know which are their thoughts after being played the Game.

1.1 Structure of the document

The document is organized as follows:

- Section 1 is the introductory chapter, which provides the scope of the deliverable.

- Section 2 describes the architecture of the S4N Integration Centre.

1 https://www.docker.com/

https://www.docker.com/

13

- Section 3 addresses all the validation tests performed to ensure the availability,

capacity, interoperability, performance, reliability, robustness, safety, security,

resilience and usability of the S4N SG platform.

- Section 4 contains the user feedback collected in different training sessions in terms of

S4N SG acceptability.

- Section 5 outlines the SIM4NEXUS-Space approach developed for the use of satellite-

derived input data for SIM4NEXUS.

14

2. The Integration Centre

The Integration Centre (IC) involves a set of technologies and procedures which have been

specifically integrated to offer a simple but powerful tool to speed up the needed processes

to deploy and maintain the S4N SG platform. The platform is composed of four main

components (Figure 1) which are described in detail in D4.4 and D4.5:

- GUI: the visual part of the tool which aims to create a realistic virtual environment

where the players can interact with the proposed Case Studies and learn about the

complex connections between the nexus elements and the impact of applying

different policies.

- KEE: the core of the SG. It acts as a central connector between the other SG

components and implements all the Game logic based on the outputs from other WPs

such as the SDMs (WP3) or the policy definitions (WP2).

- S4N Databases: All SIM4NEXUS data, either generated during the project, such as the

Learning Goals (T4.1) or the policies (WP2), or by the players during the execution of

the Game, are stored in the SIM4NEXUS database. It is divided into two components: i)

the Semantic Repository (SR) (D4.4) and a relational database. Depending on the

source, type and utility of the data, it will be stored in one of these two databases.

- SDM Engine: a specific key interface which has two main functionalities. First, it is in

charge of integrating the SDMs (provided by WP3) to the KEE and, second, it manages

their execution to simulate the different Game turns.

Figure 1. S4N SG Architecture

15

The development, test and deployment processes needed to implement a high software

platform have been divided into (at least) three environments:

- Production (PRO): Final environment where all the modules and functionalities have

been tested by the developers and other S4N partners. It corresponds to the official

S4N SG web site (https://seriousgame.sim4nexus.eu/) and it is open and available for

playing the Game. All the training sessions, where the users’ feedback have been

collected (section 4), have been held through this environment.

- Pre-production (PRE): Intermediate environment where the platform and all the

modules and functionalities have been previously tested by the developers (in

development environments). In this case, the S4N SG is ready to be tested by the S4N

partners and experts in order to validate the expected/desired behaviour of the

different SGs. Through this environment, the CS members have the opportunity to i) play

the Game developed for their CS, ii) test the different components (Policy Cards, Policy

Objectives, Policy Goals and Nexus Health) configured through the corresponding

excel files and, iii) implement modifications and adapt the previous components

(updating the excel files) to achieve the desired performance. From a development

point of view, it is considered a second layer of manual testing.

- Development (DEV): The base environment where the S4N SG modules and

functionalities have been developed and tested. From the SDM Engine to the KEE to

the GUI, all the implementations have been thoroughly tested and validated (more

details in section 3 Testing of the system) in order to ensure excellent quality and

functionality. A series of (automatic) tests have been defined to cover different areas

such Global components, Local components, load testing, browsers compatibility,

screen resolutions, security, resilience, scalability and/or interoperability.

- Auxiliar development environments: When it was considered necessary, due to an

important or big development which would imply deep modifications, a fork of the

development environment was created and the new code was implemented and

tested separately and finally, once it was considered ready, merged with the official

DEV environment. This procedure was extremely useful to continue with the

development and maintenance of the platform, prevent delays in the different

implementations due to other developments and isolate the new (big) functionalities

to ensure its correct development and test. Some examples are the implementation of

the Login System or the development of Dynamic Policies.

https://seriousgame.sim4nexus.eu/

16

The main software tool, used to manage the platform code and the different environments, is

Git2, a free and open-source distributed version control system designed to handle everything

from small to very large projects with speed and efficiency. During the project, EPSILON

provided a Git repository (GitLab3) to develop the KEE and SR modules, and UNEXE did the

equivalent (GitHub4) for the GUI developments.

Each of the previously listed environments corresponds to a specif Git code branch (Figure 2).

Figure 2. Gitlab repository interface showing different code branches.

Once a new functionality is developed, tested and validated in DEV environments, the PRE

environment merges these modifications (from DEV) and it is updated to allow the

corresponding tests. Finally, when it is agreed that the functionality is ready, the PRO

environment executes the same process and make public the developed functionality. This

2 https://git-scm.com/
3 https://about.gitlab.com/
4 https://github.com/

17

practice ensures the correct continuous and integration process to finally provide a high-

quality outcome.

In terms of deployment and administration of the S4N environments, these tasks have been

managed by Docker infrastructure. Each environment has its specific docker configuration to

automatize the disposition of its corresponding modules.

With the objective of adding a new layer of security during the deployment of the new

implementations, a Docker images version system has been designed. In detail, it allows

immediate response in case the latest deployed version has any problems, through the

(re)deployment of the previous Docker image version with the latest stable code.

2.1 Architecture

The S4N IC architecture (Figure 3. S4N Integration Centre architecture) has been planned to

act as a base infrastructure where all the S4N environments will be deployed and made

accessible to the public to be played, in case of PRO environment, or for testing purposes for

the rest.

sim4nexus.eu is the domain under which different S4N resources can be found, such as the

S4N official web page https://www.sim4nexus.eu/. From this domain, the sub-domain

seriousgame.sim4nexus.eu has been defined to locate the S4N SG web site

https://seriousgame.sim4nexus.eu/. During the development of the project, this subdomain

has been redirected to the server infrastructure provided by EPSILON (detailed in section 2.2

of this document) where all the environments have been deployed. Through the subdomain

and the configuration of different paths, all the environments (and the corresponding

modules) have been published and made accessible from the internet.

The frontal face of the IC, and the manager of the URL paths and the corresponding internal

routing, is an NGINX Reverse Proxy5. Proxying is typically used to distribute the load among

several servers, seamlessly show content from different websites, or pass requests for processing

to application servers over protocols other than HTTP. In the S4N SG platform, it is used with two

objectives: first, to host and serve some of the S4N GUIs and, second, to redirect all the requests

to the corresponding S4N resources/services deployed as Docker containers.

5 https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

https://www.sim4nexus.eu/
https://seriousgame.sim4nexus.eu/

18

Figure 3. S4N Integration Centre architecture

19

Internally, the different S4N development environments and modules are encapsulated in

Docker containers, as services, and are interconnected through a specific network topology

which allows isolated communication between containers.

2.1.1 Proxy

Figure 4 shows a reverse proxy taking requests from the Internet and forwarding them to servers

in an internal network. Those making requests connect to the proxy and may not be aware of

the internal network.

Figure 4. Reverse proxy concept6

In the following table (Table 1), the different URLs (and paths) are linked to the resource that

identifies.

URL Resource (the URL root is

https://seriousgame.sim4nexus.eu)
Service

S4N

Env
Docker container

/ GUI S4N SG PRO s4n_nginx_ui_pro

/global GUI Global CS PRO s4n_nginx_ui_pro

/ontology GUI Ontology PRO s4n_nginx_ui_pro

/semanticRepository GUI SR Frontend PRO s4n_nginx_ui_pro

/semanticRepositoryB/s4n API SR Backend PRO sr_backend

/semanticRepositoryB/jena API SR Jena PRO sr_jena

/namingConvention GUI NC Frontend PRO naming_convention_frontend

/BNamingConvention/semrepo/api API NC Backend PRO naming_convention_backend

/kee KEE S4N SG PRO s4n_pro

/auth KEE S4N SG PRO s4n_pro

/pre GUI S4N SG PRE s4n_nginx_ui_pro

/pre/kee KEE S4N SG PRE s4n_pre

/pre/auth KEE S4N SG PRE s4n_pre

/dev GUI S4N SG DEV s4n_nginx_ui_pro

/dev/kee KEE S4N SG DEV s4n_dev

/dev/auth KEE S4N SG DEV s4n_dev

6 https://en.wikipedia.org/wiki/Proxy_server

20

Table 1. S4N Service URL locations

The services of the IC, listed in Table 2, have not been included in the previous table because

they cannot be accessed from internet through a specific URL. They correspond to the internal

databases of the S4N platform and can be directly accessed via IP for its management.

Service S4N Env Docker container

PRO database PRO postgres_pro

Aux database PRE & DEV postgres

NC database PRO naming_convention_mongo

Table 2. S4N database services

The SR and NC services have been developed and tested in DEV environments but have been

not included in Figure 3 (neither Table 1 nor Table 2) since the services are completely

operative and the corresponding DEV environments are no longer needed nor maintained.

2.1.2 Environments

To ensure a high-quality final system, the development of the S4N platform has been

conducted through different development and validation environments allowing a

continuous development procedure. From DEV environments, to PRE, to finally PRO, the new

functionalities and all the implementations have been exhaustively tested and validated to

provide a robust and consistent platform.

DEV: Development Environment

It corresponds to the initial environment where the S4N SG modules and functionalities have

been developed and tested. From the SDM Engine to the KEE to the GUI, all the

implementations have been thoroughly tested and validated in order to ensure excellent

quality and functionality. A series of (automatic) tests have been defined (section 3 of this

document) to cover different areas such Global components, Local components, load

testing, browsers compatibility, screen resolutions, security, resilience, scalability and/or

interoperability.

Since the developments have finished, it can be considered closed, but it will not be removed

because, in case any code bug or problem is detected, DEV environment will be used to

correct it.

Also, the SR and the NC tool have been initially developed in this environment to finally be

moved to PRE and PRO after the corresponding validations.

DEV Aux: Other development environments

When it was considered necessary, due to an important or big development which would

imply deep modifications, a fork of the development environment was created and the new

code was implemented and tested separately and finally, once it was considered ready,

21

merged with the official DEV environment. This procedure was extremely useful to continue

with the development and maintenance of the platform, prevent delays in the different

implementations due to other developments and isolate the new (big) functionalities to ensure

its correct development and test. Some examples are the implementation of the Login System

or the development of Dynamic Policies.

All the Auxiliar DEV environments will be closed since their functionalities have been

successfully merged to the DEV (and PRE and PRO) environments.

PRE: Pre-Production Environment

An intermediate environment where the platform and all the modules and functionalities have

been previously tested by the developers (in development environments). In this case, the S4N

SG is ready to be tested by the S4N partners and experts in order to validate the

expected/desired behaviour of the different SGs. Through this environment, the CS members

have the opportunity to i) play the Game developed for their CS, ii) test the different

components (Policy Cards, Policy Objectives, Policy Goals and Nexus Health) configured

through the corresponding excel files and, iii) implement modifications and adapt the previous

components (updating the excel files) to achieve the desired performance. From a

development point of view, it is considered a second layer of manual testing.

Similarly to the DEV environment, PRE will remain operative since the correction of possible

bugs will also be checked here before it goes to PRO environment.

PRO: Production Environment

Final environment where all the modules and functionalities have been tested by the

developers and other S4N partners. It corresponds to the official S4N SG web site

(https://seriousgame.sim4nexus.eu/) and it is open and available for playing the Game. All

the training sessions, where the users’ feedback have been collected (section 4), have been

held through this environment.

PRO environment will remain always up since it hosts the official S4N SG platform.

2.2 Hardware resources

Within the project, the SIM4NEXUS Serious Game (SG) has been hosted on a virtual private

server (VPS) provided by EPSILON.

Server Details

https://seriousgame.sim4nexus.eu/

22

VPS XL SSD
IP 193.164.132.202

IPv6 2a02:c205:2018:9354::1

Location Munich

VNC 213.136.66.222:63005

Host system 4580

OS Ubuntu 18.04 (64 Bit)

Key technical specifications:

• state of the art hardware and virtualization based on KVM

• Ten CPU cores (Intel® Xeon® and AMD Epyc™ processors)

• 60 GB RAM

• 1600 GB of SSD disk space for a maximum data transfer rate

• 4 snapshots for a quick system restore

• unlimited traffic

• 1 Gbit/s port

• DDoS protection

• VNC access

All the tests presented in section 3 have been performed in this infrastructure.

Once the project finishes, the S4N SG platform will be deployed in a different server with similar

technical specifications, to let the game be available during at least coming 2 years.

2.3 Deployment

As pointed out, Docker has been the key technology whereby the S4N platform and all its

environments and modules have been deployed.

Each S4N environment has its own docker-compose7 file that orchestrates the deployment of

the required Docker containers (identified with the Docker symbol in Figure 1. S4N SG

Architecture) corresponding to the different modules (such the GUI, KEE or S4N databases).

Through this docker-compose file, the environments are configured and the network topology

which connects the modules is specified.

Φive docker-compose files, and the underlying Docker containers, have been defined:

7 https://docs.docker.com/compose/

23

- PRO env:

o Nxing proxy: which contains the PRO GUI among other GUIs.

o KEE

o PRO database

- PRE env:

o KEE

- DEV env:

o KEE

- SR:

o SR backend

o Jena Fuseki

- NC:

o NC Frontend

o NC backend

o NC database

The auxiliary database used in PRE and DEV environments has been deployed as a separate

and isolated docker container into a specific network.

24

3. Testing of the system

Testing activity over S4N side involves a wide variety of operations which need to be classified.

This classification brings up more clarity to those testing activities, their procedures and the final

purpose of each one.

Figure 5: Serious Game tool Architecture.

Taking as a reference the already existent diagram which reflects the depth of the entire

system (see Figure 5) it can be seen how, from a generalized point of view, the components

constantly interact with each other, always waiting for the correct functionality as a key to

continue working normally.

Several factors can alter this behaviour (pre-release versions, hot patches, versions conflict and

many other human factors). These ones must be detected quickly and in as much detail as

possible. To achieve this functionality of control over the existing system, a series of validation

programs and scripts have been developed. These have integrated into their code the correct

functioning that a subsystem of the Serious Game Architecture should present as well as its

desired outcome.

25

The programs for controlling behaviour, development, outcome and evolution of the

subsystems have all the aspects that a system can adopt during its operation. These aspects

are classified as valid or invalid according to the purpose of the system in question. In the case

that the system adopts an invalid position, it will quickly notify the scenario and the

background that generated this outcome. With this data, the team is going to analyse where

the error comes and how to solve it in the shortest time possible. In case the subsystem presents

a non-defined or "new" behaviour for the test script, it will be quickly reported as such to

improve the alert system, contemplate new scenarios and know how to solve them.

For the general purpose of the testing systems, the entire testing activity needs to be focused

at different levels. This is intended to obtain both good parts of testing a Component and

testing a Global System.

By testing Global Systems, the overall testing activities benefit from having a simplified and

comprehensive view of the entire structure. This base allows to quickly detect an error among

the procedures that exist between the subsystems. However, being able to quickly detect the

errors in the global system have a negative side effect. This effect is the detail of the error. By

making the test system more generic, it is easy to spot an error but more difficult to know the

specific interaction that produced this error.

To solve this necessity of detail a second the second type of testing activity have been

implemented, the Component testing. Those types of testing are linked by behaviour with the

Global System test so, when an error is spotted in a generic location, the Components tests of

this location take part into the action to provide more information on the error and detect its

origin.

26

3.1 Global components

Going back to the already introduced Figure 5, the Serious Game Tool Architecture has four

main components which can be divided into three principal data flows. Starting at the Serious

Game GUI, it continually exchanges information with the Knowledge Elicitation Engine (KEE).

Once the KEE is reached two possible paths can be followed. First, the S4N Database, to

successfully store the information about the games gathered data. And, secondly, the Nexus

Integration, which embeds the corresponding SDM of each Case Study to successfully simulate

the scenarios of the Serious Game.

During this quick summary of the communication between components, there have been

introduced three communication channels that need to be analysed to guarantee their

correct behaviour (see Figure 6). This is intended to avoid unwanted scenarios, the

consequence of the modification of the behaviour of any of these components.

Figure 6: Simplified Serious Game Architecture connections

27

3.1.1 Game Progression Test

The goal of this Global System unit is to prove the correct behaviour among the Serious Game

GUI and the Knowledge Elicitation Engine. It is important to notice that, even though they are

global tests, they need to be isolated from other global tests. If these tests started to depend

on each other, it would only trigger a great and unique general test.

For this reason, the Game Progression Test only tests the trigger of the communication between

the Serious Game GUI and the KEE. By testing the game progression, it will only attach the

Game Simulation Test to this Game Progression Test.

Requirements:

To trigger this Global System Testing unit, it is necessary to run the S4N_Global_TestingUnit.py

script with the following options:

Table 3: Game Progression Test arguments

argv0 argv1 argv2

Configuration file

name without the

extension.

List of the Case Studies

to be tested with the

format:

Enable Game Progression Test (Y/N) with the

format:

[number,number, …]

[2,3]

“Y” or “N” (without “”)

Y

The first two parameters (argv0 and argv1) will introduce the Testing unit into their scenario. By

providing the Serious Game context and the Case Studies involved in it. Referring to the third

parameter (argv3), it allows to enable the execution of two Global System testing units at once

but completely isolated one from the other, the main purpose of it is to reduce execution time

and complexity. If set to yes the SDM will run with all PolicyCards, PolicyGoals, Policy Objectives

and Nexus Health formulas active to perform a full simulation. Otherwise, the system will run a

dummy SDM which will only fail if the SDM has semantic exceptions on it.

Functionality:

This test will simulate the interaction of a user with the Serious Game GUI by providing HTTPS

requests to the KEE to progress in the game evolution. The goal of the test is divided into

different steps. Each one reported on console with the format:

>> [TEST UNIT]: Game Progression Test, Step (1/8), Trigger serious game initialization, ERROR

Meanwhile, the Test Unit goes one the Console logs will trigger similar outputs but increasing

the steps of it. Once an unexpected behaviour is detected, the Test Unit will trigger a report of

it. Reports logs follow the following format:

>> [TEST UNIT]: Game Progression Test, Step (1/8), Trigger serious game initialization, ERROR

28

Thanks to the combination of both types of console logs, the Global System Testing unit can

provide feedback about which component is not following their desired behaviour based on

its expected communication protocol.

The testing steps for Game Progression Test are defined as:

Table 4: Game Progression Test Steps

Step Action Endpoint

Serious Game initialization Request to
/kee/wps?identifier=

sim4nexus_initialization_step

Download of Case Study scenario Response from
/kee/wps?identifier=

sim4nexus_initialization_step

Progression of turns: 2/6 to 6/6 Request to
/kee/wps?identifier=

sim4nexus_simulation_step

End of Serious Game Session Response from
/kee/wps?identifier=

sim4nexus_simulation_step

Each of the previous steps can provide different information about which component is

correctly performing their work and which component is showing up an unexpected

behaviour.

Table 5: Game Progression Test outcomes

Step Name Outcome

1
Serious Game

initialization

Response: [200],

Expected behaviour, the KEE has received and understood the data

provided to initialize a new Serious Game instance of the specified

Case Study.

Response: [400],

Unexpected behaviour, the KEE is up and working ok but the request

is not correctly formatted. If this is the first time the request is done it

can be an HTTPS request format problem. If the request was working

in previous versions of the Serious Game, this can be a modification

in the KEE request required parameters.

Response: [404],

Unexpected behaviour, the KEE is up but not ready to process

requests about creating a new Serious Game instance. The reasons

can be because of a maintenance process or because the Case

Study does not exist.

No response: [Timeout],

Unexpected behaviour, the KEE does not respond to the Serious

Game GUI HTTPS request. The KEE might be down due to an

unexpected error or because of maintenance tasks.

2 Response: Not empty and required fields are present,

29

Download of

Case Study

scenario

Expected behaviour, the KEE has returned the entire Serious Game

context of the specified Case Study.

Response: Not empty and required fields are not present,

Unexpected behaviour, the KEE is missing required fields in the

response. This can be a sign of inconsistences inside KEE system.

Response: Empty,

Unexpected behaviour, the KEE has failed to launch the new Serious

Game instance or the HTTPS response building system is showing

some inconsistences.

3
Progression of

turns

Response: [200],

Expected behaviour, the KEE has received the modifications to be

done over the existent Serious Game instance. It has applied those

changes without any unexpected behaviour and returned a new

scenario for the Serious Game instance.

Response: [Not 200],

As the simulation process is a progression of the initialization process

any result different than 200 will be considered as an unexpected

behaviour. The errors contained in this section will all be a

consequence of an unexpected error or issue during the SDM

simulation process of a Case Study given a scenario and a certain

modifications to be done.

4

End of Serious

Game

Session

Last Response: [Turn 6 reached, 200],

Expected behaviour. This step is highly linked to the previous one

(Step 3). If the Game Progression unit of test manages to successfully

receive the response of the simulation request made for the Turn 6,

this will be considered as a successfully ended game session.

Response: [Turn 6 not reached, not 200],

Following the format of step 3. This step will consider an error any

response for Turn 6 simulation which returns an HTTPS response

different from 200.

30

3.1.2 Game Simulation Test

This test can be easily run by enabling a Boolean (yes/no) parameter among the

S4N_Global_TestingUnit.py script. The Game Progression Test unit depends on being able to

run the SDM at least once to generate an output scenario of the Serious Game instance.

As it was mentioned in the introduction of the ‘Report of testing’ section, this dependency

among tests is dangerous as makes the entire execution foggy. The errors can be hidden by

bigger ones which will point to an incorrect component failing on its duty.

The solution, when two components are highly dependent on each other, is to create a

“dummy” version of one of them. To select which Component needs a dummy version of it is

only required to follow the game flux and spot which is the component with less interaction

over it. To this end, by making the Component (with the most interactive behaviour) a dummy,

the overall testing activity is being seriously damaged leaving out outcomes that will not be

able to be tested.

Taking the two involved components Serious Game GUI and Nexus Integration it can be easily

spotted an overwhelming difference among the integration that each one can hold.

On one side, Serious Game GUI holds the Case Study variables which will modify the outcome

of the next turn. These variables are set thanks to the free interaction of the User with the Policy

Cards leaving into almost a nn possibilities (where n take the value of the amount of

PolicyCards). Which results is an important amount of interaction to be considered.

When comparing this interaction with the other side, the Nexus Integration, an important result

comes up. The SDM Engine computes high amounts of information but, since it is a script, its

parameters need to be fixed leading into a deterministic behaviour (adequate to be summed

up into a dummy).

31

Requirements:

If this Game System unit needs to be tested, it can take advantage of the parameters

introduced in subsection 3.1.1. The number of parameters will be the same but the third one

must be activated.

Table 6: Game Simulation Test arguments

argv0 argv1 argv2

Configuration

file name

without the

extension.

List of the Case Studies to be

tested with the format:

Enable Game Progression Test (Y)

with the format:

[number,number, …]

[2,3]

“Y” (without “”)

Y

Functionality:

This Global System test is based in a previous working test so it establishes an order of execution

to be correctly tested. See Figure 7 to follow this explanation.

The previous test, which needs to be run and tested without errors, is the Game Progression

Test unit (S4N_Global_TestingUnit.py script) with the given parameters:

Table 7: Example of simulation test arguments

argv0 argv1 argv2

Configuration file name

without the extension.

List of the

Case Studies

to be tested

“N”

Note that the third parameter needs to be fixed to “False” or “No” by providing an “N”

character. This will perform the Game Progression Test execution. This execution will only bring

information about how Serious Game GUI and KEE are performing together. No information

about the interaction between KEE and Nexus Integration will be provided as this last one it is

a placeholder which only shows up the perfect behaviour for the SDM which needs to be

tested later (see Figure 7, step 1).

Once the Global System test for Serious Game GUI and KEE finishes without errors, a deduction

can be assumed in order to start performing the Game Simulation test. If Serious Game GUI

and the KEE perform correctly taking a dummy version of the real Nexus integration, the

original Nexus Integration component can be brought up to test their behaviour (see Figure 7,

step 2).

32

Figure 7: Game Simulation testing process

Performing the Test shown in Figure 7, step 3, there are no confirmations that the Serious Game

GUI test will perfectly pass. But if this test does not pass, thanks to Steps 1 and 2 of the same

Figure, it can be deduced that the problem is between the new interaction introduced among

the KEE and the Nexus Integration. This entire procedure answers the original necessity of

isolation among tests to know at any moment which system is failing.

As a consequence of this high dependence between the systems of progression in the game

and simulation, the testing steps for Game Simulation Test are equivalent to the steps already

introduced in the subsection 3.1.1.

Table 8: Game Simulation Test endpoints

Step Action Endpoint

Serious Game

initialization
Request to

/kee/wps?identifier=

sim4nexus_initialization_step

Download of

Case Study

scenario

Response from
/kee/wps?identifier=

sim4nexus_initialization_step

Progression of

turns: 2/6 to

6/6

Request to
/kee/wps?identifier=

sim4nexus_simulation_step

End of Serious

Game Session
Response from

/kee/wps?identifier=

sim4nexus_simulation_step

The difference arrives when deductions need to be extracted from the responses of these

steps. Inside the Game Simulation test, it is already known that the Game Progression unit works

33

well (as it is a requirement to perform this test). Thanks to this premise, the responses and errors

get from the HTTPS requests will have different meanings, the vast majority of them will point

out behaviours of the Nexus Integration System.

Table 9: Game Simulation Test outcomes

Step Name Outcome

1
Serious Game

initialization

Response: [200],

Expected behaviour, the KEE has successfully initialized a new

instance of Serious Game. This instance has run until the temporal

mark of 2020 proving that the Game Simulation System without

interaction successfully works.

Response: [400],

Unexpected behaviour, the KEE is up and working ok as the

response arrived. This error can be a consequence of two scenarios.

The first of them is a wrongly formatted request. Meanwhile the

second one refers to an exception product of running the Nexus

Integration system to simulate the Serious Game until the timestamp

mark of 2020. As the “dummy” version of the SDM was working ok,

this error points out a problem with the Nexus Integration System.

Response: [404],

Unexpected behaviour, the KEE is up but not ready to process

requests about creating a new Serious Game instance. The reasons

can be because of a maintenance process or because the Case

Study does not exist.

No response: [Timeout],

Unexpected behaviour, the KEE does not provide a response the

Serious Game GUI HTTPS request. The KEE might be down due to an

unexpected error or because of maintenance tasks.

2

Download of

Case Study

scenario

Response: Not empty and required fields are present,

Expected behaviour, the Nexus Integration System correctly applies

the stocks, interventions and history of actions for a Case Study

Response: Not empty and required fields are not present,

Unexpected behaviour, the KEE is missing required fields in the

response. This can be a sign of inconsistences inside SDM code or

missing data inside the Case Studies initialization data.

Response: Empty,

34

Unexpected behaviour, the KEE has failed to launch the new Serious

Game instance or the HTTPS response building system is showing

some inconsistences.

3
Progression of

turns

Response: [200],

Expected behaviour, the KEE has received the modifications to be

done over the existent Serious Game instance. It has applied those

changes without any unexpected behaviour and returned a new

scenario for the Serious Game instance.

Response: [Not 200],

As the simulation process is a progression of the initialization process

any result different than 200 will be considered as an unexpected

behaviour. Any response different than 200 while running a

simulation step after successfully running an initialization step (steps

1 and 2) will point out a problem with the policies system. This system

encapsulates the PolicyCards, PolicyObjectives, PolicyGoals and

NexusHealth systems.

4
End of Serious

Game Session

Last Response: [Turn 6 reached, 200],

As it was introduced in subsection 3.1.1. this step it is just a

progression of step 3 but reaching the goal of the Serious Game

(turn 6). Reaching the last turn without any problem (code 200) will

mark the overall Game Simulation Test as a success.

Response: [Turn 6 not reached, not 200],

Following the same trend, getting an error during the simulation of

the last turn is a strange behaviour if the previous 5 turns were

correctly simulated. The main reason to reach this unexpected

behaviour will be because of a misunderstanding between the KEE

and the SDM about the desired length of the variables. Variables

store values of each month. Any difference about the initial length

of the value attribution system for these variables can produce this

scenario.

35

3.1.3 Game Data Test

Regarding the tests about data storage, this process is highly isolable. Storing data consists into

a link between a program and a Database Administrator to select, save, update or delete a

specific amount of information.

By this definition, the Game Data Test follows a similar procedure as the one seen in subsection

3.1.2. There is an undeniable link with the Serious Game GUI, since the data which it is saved

during the KEE procedures, becomes the context of the Serious Game instance which is

running and being modified. The User will always have control over the information which is

stored in the Database as their interaction with the applied PolicyCards are the modifiers of

the base evolution of the Case Study which is being played.

As a result, again there will exist an execution order of the Global System tests. This order will

be composed by an initial successful execution of the Game Progression Test followed by the

execution of this Game Data Test. The procedure is exactly the same as the one followed in

subsection 3.1.2. among Game Progression Test and Game Simulation Test.

This similitude does not mean that there will be a dependency in which refers to Game

Simulation Test and Game Data Test, both tests are completely isolated and can be run

individually or together as will be shown in Functionality section. The only element these tests

have in common is the dependency with Game Progression Test, as it is necessary to first check

the system that inputs data in order to simulate new data (Game Simulation Test) or store this

data (Game Data Test).

Requirements:

Following the idea seen in the previous test, this one can also be tested taking advantage of

the Game Progression Test unit (S4N_Global_TestingUnit.py script). The addition of this isolation

among Game Simulation Test and Game Data Test brings up a new parameter to this script.

By default, this parameter is set to “False” or “No” and will enable the execution of the Game

Data Test.

Table 10: Game Data Test arguments

argv0 argv1 argv2 argv3

Configuration

file name

without the

extension

List of the Case

Studies to be tested

with the format:

Enable Game

Progression Test (N/Y)

with the format:

Enable Game Data Test

(N/Y) with the format:

[number,number, …]

[2,3]

“N”, “Y” (without “”)

Y

“N”, “Y” (without “”)

Y

36

The existence of both parameters (argv2 and argv3) reflects how the Game Simulation Test

and Game Data Test can be run at the same time or individually. The execution of both tests

at the same time will never lead to an error as these systems do not have any sort of

communication among them.

Functionality:

This test functionality inherits from the structure seen in section 3.1.2. The base idea about

having to previously run a more interactive test (Game Progression Test) will remain the same.

The main difference appears in terms of dependencies. This test, unlike the Game Simulation

Test, is completely isolated from the progress of the game. Progression and simulation systems

do not depend on the storage system to work. This storage system can easily be deactivated

until its specific behaviour is checked.

As a consequence, the overall process (see Figure 8) will be quite similar to the process seen

in Figure 7 but without the special need of having a dummy version of the system we want to

test.

Figure 8: Game Data testing process

37

Following Figure 8, the preliminary testing activity starts like the one seen in section 3.1.2. taking

a dummy version of the Nexus Integration system to test the Serious Game GUI (step 1) and

end up with both systems successfully tested (step 2). From here, starts the procedure to check

the behaviour of the SIM4NEXUS Database. Thanks to the third parameter passed to the script

(argv3), the database functionality can be enabled (step 3). Once it is working, by creating a

new Serious Game instance and making progress in their timeline, the changes applied to the

base scenario will start to be persisted and checked inside the Database. The final result of this

operation will be a complete system test (step 4).

It is important to notice that inside Figure 8, step 3 is referenced as “Step 3.A”. This is an intended

nomenclature. As it was previously introduced, the System Game Data test unit allows running

without any dependency linked to the Game Simulation Test unit. Thanks to this, if the third

parameter (argv3) it is set to “True” or “Yes” by providing an “Y” character, while argv2 is kept

as deactivated, it will allow testing the entire Game Database System without having to

previously test the Game Simulation System. Resulting in a new testing flow, starting at step 1

and directly jumping into “Step 3.B” (see Figure 9).

Figure 9: Game Data alternative testing process

Different from the behaviour seen in subsections 3.1.1. and 3.1.2., this Global System Test it is

strongly isolated from the rest. As a consequence of it, the Game Data Test steps will not have

any similitude with the steps seen in previous sections. This system is only responsible for storing

the data related to those modifications that were passed to the Nexus Integration in order to

compute an outcome scenario different from the expected base scenario.

38

Table 11: Game Data Test steps

Step Action Endpoint

Store Serious Game modifiers Request to
/kee/wps?identifier=

sim4nexus_initialization_step

Get and check Serious Game

data

Request and response

from
/games/findBySessionId

Some of the previous considerations need to be taken into account before performing this

test. First, this test can only be performed if the Game Progression Test has ended with a

successful result. The second consideration to be taken into account refers to the Nexus

Integration System. It is not required to previously pass the Game Simulation Test since a

“dummy” version of it can take place. As it was introduced before, this dummy version is

always the same and it is already proved that it does not lead to errors.

Thanks to these considerations the responses provided by the system will focus their reasoning

in the Game Data system.

Table 12: Game Data Test outcomes

Step Name Outcome

1

Serious Game

initialization

Response: [200],

Expected behaviour, the storage process has successfully

ended. The Database Management System has successfully

performed an INSERT operation inside the Game class. Content

should be ready to be checked by performing a SELECT

operation (step 2).

Response: [400],

Unexpected behaviour, by receiving a generalized error (code

400) from the KEE it can be spotted an error during the storage

process. This can be a consequence of different causes:

- An incorrect database initialization.

- An incorrect definition of the classes used by the Database

System.

The database route is currently down performing an exception

during the storage process.

 No response: [Timeout],

Unexpected behaviour, the KEE does not provide a response the

Serious Game GUI HTTPS request. The KEE might be down due to

an unexpected error or because of maintenance tasks.

39

2
Get and check Serious

Game data

Response: [200, correctly

formatted],

Expected behaviour, by

performing a SELECT over the

Database with the Game

Session id, the entire Serious

Game Instance can be

collected and analyzed.

When this analysis shows up

that all the fields match the

model and nothing is set to

“Null” or “Empty”, the overall

process can be considered

as a success.

Response: [200, wrongly

formatted],

Unexpected behaviour, this

happens when receiving an

object without the expected

fields in the model. This

situation is a clear indicator of

a wrong specification

among the Game Database

system models.

No response: [Timeout],

As this step also involves a

communication with the KEE

API and the Database

Manager System, receiving

an exception for timeout can

be caused by:

KEE is down or under

maintenance

Database instance is down

or under maintenance

40

3.2 Local components

Once the Global Testing system has been introduced and explained, following the guidelines

seen in the introduction, the following procedure can be presented. The Component Testing

units have the mission of finding the exact system which is causing the error. This spotting

procedure is based on a much more reduced and specific test scope.

Component testing will be a layer under Global System Testing providing much more

information about which system is failing and why (see Figure 10). As it was seen in point 1.1.

subsections, Global System Test provides useful information about which communication is

failing and in which system the error is located at. However, when it refers to solving the error,

its report is still pretty general and involves various subsystems. This will result in slow and

cumbersome work for the programmer as it would be necessary to check the subsystems and

their operation one by one. When the Components Testing layer is added and is coordinated

with the already existent Global System Tests, their cooperative work leads into a precise report

of the flux state and the error location.

Given an overall vision of which communication is failing (Global System Testing). Components

involved in this communication will perform specific checks along with the program flow of

execution. Their purpose is to detect at which exact point the flow stops. Once this information

is gathered and contrasted with the information about the failing communication, more

precise deductions can be extracted.

Figure 10: Serious Game flux with exceptions

41

If all the problems are solved or the Global System Tests and Component Tests did not report

any error, the output will be a successful flux evolution (see Figure 11). When this status is

reached the overall system is proved as stable.

Figure 11: Successful Serious Game flux

Based on the simplified view of the Serious Game architecture presented in Figure 6. A

common pattern for these communications can be spotted. Each communication between

systems will previously involve a necessary unavoidable communication with the KEE. This

structure adds dependency into the Knowledge Elicitation Engine but it also adds order and

format. Thanks to having all the communications managed by KEE, the entire Component Test

System can be built around it. This system is not allowed to be introduced inside the already

existent code of the KEE. Test scripts should be easily spottable and isolated from the code.

This is to avoid unwanted dependencies or influences from the already existent code (global

variables, existent functions, etc.). By isolating the tests scripts it also makes easier to scale them

into a bigger or more specific version thanks to having all the imported features under control.

The resulting system will be an entire new script (S4N_Component_TestingUnit.py) which will

contain the necessary Component Tests on it (see Figure 8). Its input will focus on a specific

Global system failing. Depending on this input it will trigger a specific set of Component Tests

to spot at which point the exception is located at.

The Components Test, inside this environment, will not have a specific System to test but a

specific component. Since a component can be involved in different systems, this testing unit

needs to be able to concatenate and execute this Component Tests in different combinations

depending on the System that is failing.

Components tests will be classified based on the KEE subsystems and their interaction with

other components of the Serious Game. This will lead to two main tests (Figure 12).

42

Figure 12: Serious Game Component-based Tests architecture

Following Figure 12, and the centralized structure of the KEE, only one main Component-based

test would be needed. The entire execution flux goes through the Coordination Module and,

by checking which subsystem is failing at this point, the location of the exceptions can be

spotted.

Actually, two Component Tests were needed because of the integration with the Database.

When a program needs to work with a database, a Database Manager System is needed. This

is an intermediary between the KEE and the Database. Its functionality is to establish and keep

a working connection with the Database as well as perform SQL queries over it. Because of

the importance of the privacy of the data is highly recommended to have this component

isolated from the main flux of the application. This is the reason why KEE Coordination Module

does not have access to this Data Access Module to know stats about how the Database is

performing. It is necessary to retrieve this information from the Database Manager System,

check the privacy of it and send it to this Coordination Module. As a result, this specific

component is tested individually.

43

When this Component Tests ends, the exception can be classified into two scenarios. First, the

exception is allocated inside the KEE. In this case, the exception will be returned as well as the

subsystem which is causing it. In which refers to the second scenario, when the exception is

allocated outside the KEE, the level of detail is still acceptable. In those cases, the exception

is classified following:

Table 13: Serious Game systems exceptions

System Exception

Serious Game GUI Invalid format of the data provided in the request

Nexus Integration Exception inside the SDM script

SIM4NEXUS Database Exception caused by the Database specification

Component Tests can be run with different purposes.

- Running Global System Tests along with Component Tests: Perform a more exhaustive

analysis over the Serious Game system.

- Running only Global System Tests: Perform a fast check over the overall application.

This type of testing procedure is faster than the one presented before but is less

accurate. It can be used as a guideline while adding new subsystems to the

application.

- Running only Component Tests: When a specific Component Test is being executed

without the rest, it is because the input of it is going to be a Global System which is

failing. This type of execution will be a subtype of point 2 when outputs a failing Global

System Test.

44

3.2.1 Coordination Module Test

Coordination Module Test checks different steps of the Serious Game instance creation and

simulation processes, taking as an important input the Global System which is being analysed.

Depending on the System, this test will reach different conclusions when an exception is

thrown.

The main procedure involves the test of each component which conforms the Knowledge

Elicitation Engine. To this end, the simplest way is to initialize and run a Game Session. By doing

this every system is put under control.

The main difference with the existent procedure seen in subsection 1.1.1. is related to the

provided request. By adding the parameter “Component-check” to “True”, the KEE is going

to perform a component-based run. This run procedure takes the one executed by the

initialization and simulation steps, and divides them into components depending on the action

performed at every time. The common procedure of these steps will be:

1. Parse Serious Game GUI HTTPS request content

2. Validate Serious Game GUI HTTPS request content

3. Validate registered user’s credentials

4. (Initialization) Simulate the initial step / (Simulation) Simulate next step

5. Retrieve PolicyCards, PolicyObjectives, PolicyGoals and NexusHealth components

based on the Case Study

6. Perform Game data persistence

7. Build the response

8. Return the response

Almost every step involves a component to be tested. By enabling the “component-check”

mode, these steps will run inside test units which will take the result of the operation. Based on

the validity of this result, the test will keep running or an exception will be thrown pointing out

the exact component which produced it.

The classification of the previous steps into components will result as:

Table 14: Coordination Module Test steps

Coordination Module

(Web Service API)
Login System SDM Manager Module

Coordination

Module

(Web Service

API)

1,2 3 4 7,8

45

In which refers to steps 5 and 6, these will be part of the Data Access Module. Both steps are

included inside the Data Access Module, managed by the Database Manager System. The

KEE can know the overall result of the operations but not the cause of them (because of

privacy). Otherwise, we would be able to indirectly debug the database. Because of this, steps

5 and 6 will form part of a specific Component Test only accessible by the Database Manager

System.

Requirements:

This test can be run by executing the Component Testing unit (S4N_Component_TestingUnit.py

script) with the following arguments:

Table 15: Coordination Module Test arguments

argv0 argv1 argv2

Configuration

file name

without the

extension

List of the Case Studies to be

tested with the format:

Enable Coordination Module Test

(N/Y) with the format:

[number,number, …]

[2,3]

“N”, “Y” (without “”)

Y

By providing an affirmative character “Y” to the test, the already introduced HTTPS request

parameter “component-check” will be set to True. For this Component Testing Unit, providing

an “N” as the third character will immediately turn off the test. As these tests are intended to

be run after running Global Tests. It makes no sense running them without the testing

functionality off. The parameter is required to know if the programmer, who is running the

program, does not run it by error as it takes much more time and resources than a normal

Serious Game computational process due to the components checks.

Functionality:

As it was previously introduced, to run this specific test it is required to provide a new parameter

to the HTTPS request (component-check). Thanks to it, the given outputs will provide

information about how the test is performing and at which step has ended. By reaching a

response containing “step 8” as the final step, the test will be considered as successful.

It is important to notice that this debug process will omit the previously introduced steps 5 and

6. To do so, it is going to test the process using a dummy version of the Case Study SDM inside

the Nexus Integration system. This version does not differ to the one seen in subsections 1.1.2.

and 1.1.3. The main difference is the extra layer of Component Testing running under the

normal flux seen in those subsections. Thanks to this layer, the system will correlate an error with

a System and a component without any special effort.

The parameters of the HTTPS request would have the following format:

46

Table 16: Initialization Step request parameters

Service Request Version Identifier Datainputs Component-check

WPS Execute 1.0.0 sim4nexus_initialization_step <payload> <True/False>

In which refers to the “datainputs” parameter, its content will be the one that has already

been introduced in previous deliverables (see Deliverable 3.8, subsection 4.2.1, Tables 12 and

13). This presented request will require the same parameters for both possible scenarios. The

first scenario, the initialization of a new Serious Game instance (Initialization Step). The second

possible scenario, the progression and simulation of one more turn inside an existing instance

of a Serious Game (Simulation Step).

An additional important feature of this system is the obligatory usage of the “player_id”

parameter located inside the payload. This parameter is required as the system will never run

in debug mode if the user, who is asking for this feature, is not an administrator. Otherwise, this

will suppose an information leak as players would be able to test which components of the

game are more sensitive to changes.

When the parameter “player_id” is provided, the flux of execution will take this id as well as the

cookies “access_token_cookie” and “refresh_token_cookie” from the request. On its next step,

it will retrieve the user’s email from those cookies. If the cookies are missing or the email does

not match the provided “user_id”, the execution will terminate there. Another possible

scenario would be a “user_id” which matches the cookies information but this user is not an

administrator. The result will end up being the same as in the previous scenario, the execution

will end right there.

Figure 13: Credentials System implication in general execution flux

47

As it can be appreciated in Figure 13, the credentials validation takes place after the steps 1

and 2. For those cases, notifying any user about why the system failed would not be a data

leak problem. The reason is because of this fail reports will only have information about the

request they provided and which fields format does not match the desired format KEE uses.

Therefore, not only would it be safe, but it would also provide information to the user as to why

its format is wrong.

Step Name Outcome

1

Parse Serious

Game GUI

HTTPS request

content

Response: [200],

Expected behaviour, the provided payload of the HTTPS request

matches the JSON format.

Response: [not 200, step 1]

Unexpected behaviour, the provided payload of the HTTPS is not

a JSON. User must provide a valid JSON payload.

2

Validate

Serious Game

GUI HTTPS

request

content

Response: [200],

Expected behaviour, the provided JSON matches the required

fields keys and values types.

Response: [not 200, step 2]

Expected behaviour, the provided JSON is missing some required

keys or the provided values does not meet the desired data types.

User must provide a valid JSON payload.

3

Validate

registered

user’s

credentials

Response: [200],

Expected behaviour, the User who has made the request is a valid

administrator of the Serious Game.

Response: [not 200, step 3]

Unexpected behaviour, the User who has made the request is not

allowed to perform it.

4

(Initialization)

Simulate the

initial step /

(Simulation)

Simualte next

step

Response: [200],

Expected behaviour, the Nexus Integration System performs as is

expected.

Response: [not 200, step 4]

Unexpected behaviour, there is a problem with the Nexus

Integration System. Most surely linked to the SDM python version

and its behaviour.

5 Build the

response

Response: [200],

48

Expected behaviour, after getting the data from the Nexus

Integration process, all the required fields are present and match

the desired format.

Response: [not 200, step 5]

Unexpected behaviour, there is a problem with the data provided

by the SDM. The script might run ok but the output format does not

match the desired one.

6 Return the

response

Response: [200],

Expected behaviour, the HTTPS response has been successfully

sent.

Response: [not 200, step 6]

Unexpected behaviour, there is an error with the communications

system of the KEE or the User has disconnected previous to get the

response.

49

3.2.2 Data Access Module Test

Referring to the isolated part of the Component Testing, this one will perform a similar test to

the one seen in subsection 1.2.3, but with a completely different scope. Inside the Data Access

Module test, the focus is to know if the data was successfully and correctly stored inside the

database.

Since this test is located inside the same script (S4N_Component_TestingUnit.py) it allows

running both Component Tests, one after the other, or isolated one from the other. By only

running the Data Access Module test means that the Coordination Module test has already

been tested and ends with a successful result. If this previous test is ignored, it will result in an

ambiguous outcome.

To check its goal, Data Access Module test takes as a premise that the Coordination Module

is already working. Thanks to this supposition, the testing script will perform a game initialization

for the specified Case Study. If during initialization the program exits with an unexpected event,

it can be ensured that the problem is inside the database.

After getting a positive or negative response from the initialization process, the most precise

part of the test will take place. Taking the entire game session as a response, thanks to this

GameSession object, the Component Testing can look for irregularities among the data. If

everything is considered correct, the test will end up with a successful state.

Requirements:

Sice this Component Test unit shares the same script as the previous one, the execution

arguments provided to the script are going to inherit from the first one.

Table 17: Data Access Module test arguments

argv0 argv1 argv2 argv3

Configuration file name

without the extension.

List of the Case Studies to

be tested with the format:

Enable

Coordination

Module Test (N/Y)

with the format:

Enable

Data

Access

Module

Test (N/Y)

with the

format:

[number,number, …]

[2,3]

“N”, “Y” (without

“”)

Y

“N”, “Y”

(without

“”)

Y

Even inheriting from the execution seen in subsection 1.2.1. some changes can be

appreciated. By attaching a third argument “argv3”, the S4N_Component_TestingUnit script

will replace the default False value. This value was disabling the Data Access Module Script

50

until now. To enable it, it is required to attach a positive character “Y” on this third argument

when running the script.

Functionality:

Following Figure 10, the flux of this Component Test can be explained in much more detail.

Once the process of creating and storing an instance of a Serious game is done, the Data

Access Module test can take place.

This test is going to retrieve a GameSession object by providing the id used to create the Serious

Game instance. The necessary HTTPS request will match the format:

Table 18: findBySessionId endpoint specification

Get Game by SessionId

KEE url /games/findBySessionId

Parameters Name Value

 id (String)

2a687a30-e565-de93-49b9

Response {

 "case_study_id": "4",

 "id": 166,

 "score": 712685706.8152567,

 "session_id": "2a687a30-e565-de93-49b9-454061704b94",

 "start_date_time": "Wed, 03 Jun 2020 13:13:57 GMT",

 "state_evolutions": [

 {

 "applied_policies": [

 {

 "policy": "1",

 "region": 1,

 "session_id": "2a687a30-e565-de93-49b9",

 "turn": 1

 }

],

 "game_id": 166,

 "id": 122,

 "turn": 1

 },

 { … }

],

 "status": "finished",

 "user_id": 0

}

51

Once the GameSession object is successfully retrieved, the validation process can take place

(see comparison process, “Yes” output on Figure 14). This process is going to take all the

parameters locally stored inside the script and compare each of them with the GameSession

Object. If the store process has been done correctly, every single comparison should be equal,

not only in value, but also in data types.

On the other hand, (see comparison process, “No” output on Figure 14), if the request to

retrieve a GameSession Object returns 404 (Resource not found) or 400 (Internal error), this fill

point out a storage problem. The causes can be due to data type mismatch or Database

tables inconsistencies.

As a result, the Component Test is going to prompt out an Error and the specific location of it

(Database models) or even the specific field of the table which is wrong (Validate Game

Instance error outputs). If no error is obtained, the entire test procedure will be considered

successful.

Figure 14: Data Access Module Test execution flux

52

Table 19: Data Access Module Test outcomes

Step Name Outcome

1

Initialization

Step

Response: [200],

Expected behaviour, the Initialization Step shouldn’t fail at this point.

Response: [not 200, step 1]

Unexpected behaviour, if this system fails, the reason is because

previous component Test wasn’t run with a successful ending state.

2

Retrieve

Game

Instance

Response: [200],

Expected behaviour, the Game Session object with the provided

game_session_id exists and can be returned.

Response: [404, step 2]

Unexpected behaviour, the object was never stored inside the

database. This can be because of a format issue or a bad definition

of the Database tables.

Response: [400 or not 200, step 2]

Unexpected behaviour, while trying to retrieve the object the

Database throws an internal exception. The most possible scenario

is a value stored with a conflictive data type format. The

recommended procedure is to delete the game instance to avoid

more exceptions on the Database side.

53

3.3 Load testing

Referring to the Serious Game, testing the workload is directly linked to the number of

concurrent players the system can hold. In terms of activity, users can be comprehended

between different actions. Each one of these actions needs to be taken into considerations

and compared with the rest to proportionate information about the stress which can hold the

server-side.

Table 20: Serious Game user actions workload analysis

User action Engine Workload Max. repetitions/user

Initialize a new Serious Game

instance

High 1

Simulate the next turn of a

scenario

Medium 6

Interact with policies None Multiple

Idle None Multiple

During a game session, the user activity will be inside one of the previous categories. Not all of

these categories are important when performing the load testing but it’s good to know that

there will be low activity points as well as high ones. The overall user interaction is

unpredictable. Because of that, the best way to test is falling into the scenario known as “Worst

Case Scenario”. Inside of it, the variables become forced to its extreme to prove the system at

high specifications.

Figure 15: Serious Game GUI flux of interaction with workload heatmap

As it can be appreciated in the previous Table, as well as inside Figure 15, the only sections

which accept parameters are the Initialization of the Serious Game and the Simulation of the

next step inside the scenario. Taking into account the Worst Case Scenario and the maximum

value those actions can take per user, it ends up into considering all the user interactions as

an entire game being played from turn 1 to turn 6.

On top of the parametrization process of the Serious Game there is the CaseStudy. It is hard to

specify a perfect CaseStudy to run the Load Tests. As a solution, the script is going to run these

tests against three different scenarios (Greece, Azerbaijan and Latvia). Each scenario

represents a different amount of workload for the server-side (in order, high, low and medium).

54

The main concern is to reproduce the interaction per user. This interaction is going to be

capable to generate different amounts of workload on the KEE side.

The WorkLoad_test.py script is going to take those groups of actions as a template and

simulate the access of multiple concurrent users (see Figure 16). As a more specific description,

the script is going to take the already introduced basic User interaction, seen in Figure 15, and

introduce it inside a function. Once the function is defined, the program will create as many

threads as the test required. Every single one of these threads is going to run concurrently

forcing the KEE under a Load Test.

Figure 16: Load Test flux of execution

Requirements:

Depending on the arguments set, the test can be focused on different aspects of the

interaction.

Table 21: Load Test arguments

argv0 argv1 argv2 argv3

Script name without

the extension.

Amount of users

(default: 40, max:

0)

List of the Case

Studies to be tested

(default: the most

complex)

Run only initialization

steps (default: No, “N”)

number

40

[number, number, …]

[2,3]

“N”, “Y” (without “”)

Y

55

Functionality:

When it comes to the procedures which can be performed taking this already presented

script. There are two main procedures possible to perform.

Table 22: Initialization Load Test specification

Initialization Load Test

Parameters
argv1 argv2 argv3

50 3 N

Aproximate time/session 0.9159 seconds

Possible outcomes

Step Outcome

Build initialization

HTTPS payload

[No exception]:

Expected behaviour, the arguments

provided match the valid parameters of

the Serious Game.

[Invalid data Exception]:

Unexpected behaviour, some of the

arguments provided are not available in

the current Serious Game version.

Request

initialization step

[No exception]:

Expected behaviour, the URL built

matches the format established by the

initialization step of the KEE.

[Error 400]:

Unexpected behaviour, the URL provided

does not match the current KEE format.

Load testing script might be outdated or

invalid data was provided.

Receive

initialization step

[No exception]:

Expected behaviour, HTTPS response

provides information about the new

Serious Game instance.

[Error 500 or no data on response]:

Unexpected behaviour, the Initialization

step has failed due to database workload

(error 500) or due to the maintenance

process.

End and collect

threads

[No exception]:

Expected behaviour, the arguments

provided match the valid parameters of

the Serious Game.

[Thread Exception]:

Unexpected behaviour, some threads still

expect a response from the KEE and the

timeout has been triggered. Slow internet

connection or database saturated.

Output example

56

57

Table 23: Full Load Test specification

Full Load Test

Parameters
argv1 argv2 argv3

50 3 Y

Aproximate time 0.9159 seconds

Possible outcomes

Step Outcome

Steps 1 to 3 from Table 22 Simulation Test

Build simulation

HTTPS payload

[No exception]:

Expected behaviour, the arguments

provided match the valid parameters of the

Serious Game.

[Invalid data Exception]:

Unexpeected bahaviour, some of the

arguments provided are not available in the

current Serious Game version. Invalid data

might be provided.

Request

simulation step

[No exception]:

Expected behaviour, the URL built matches

the format stablished by the simulation step

of KEE.

[Error 400]:

Unexpeected bahaviour, the URL provided

does not match the current KEE format. Load

testing script might be outdated or invalid

data was provided.

Receive

simulation step

[No exception]:

Expected behaviour, HTTPS response

provides the information about the following

turn of Serious Game instance.

[Error 500 or no data on response]:

Unexpeected bahaviour, the Initialization

step has failed due to database workload

(error 500) or due to mantinance process.

End and collect

threads

[No exception]:

Expected behaviour, the arguments

provided match the valid parameters of the

Serious Game.

[Thread Exception]:

Unexpeected bahaviour, some threads still

expect a response from the KEE and the

timeout has been triggered. Slow internet

connection or database saturated.

58

Output example

In terms of workload, the Case Study ‘3’, shown as an example, has the lowest workload the

Serious Game is able to generate. As it was presented on the introduction of this section, to

test different amounts of workloads two more Case Study were added to the test. Each test

output can be seen down below.

The following load tests have been conducted against the PRE environment, which is an

identical copy of PRO. Based on the S4N development server, which has been detailed in

section 2.2, the Apache server is configured accordingly to the HW resources. The main

configurations, which are directly related to these tests, are the following:

- Processes: (9) The number of worker processes (instances of the WSGI application) to

be started up and which will handle requests concurrently.

- Threads (2) The number of threads in the request thread pool of each process for

handling requests.

- max-clients: (18 = 9*2) The maximum number of simultaneous client connections that

will be accepted. This will default to being 1.5 times the total number of threads in the

request thread pools across all process handling requests.

Full Load Test

Parameters
argv1 argv2 argv3

50 2 (Greece) N

Average time/initialization 50s

The average time for an isolated initialization step for the Greek CS is 5.5s.

59

Some of the requests have been denied due to the time spend to process them and the server

configuration.

Full Load Test

Parameters
argv1 argv2 argv3

50 3 (Azerbaijan) N

Average time/initialization 0.99s

The average time for an isolated initialization step for the Azerbaijan CS is 0.1s (note the

difference in complexity against the Greek CS).

Full Load Test

Parameters
argv1 argv2 argv3

50 4 (Latvia) N

Average time/initialization 9s

The average time for an isolated initialization step for the Latvia CS is 1.5s.

The Workload Script also allows to run multiple CaseStudies performing a random choice of

each one to set the Thread Case Study. This option can be enabled thanks to the 4th argument

given to the script. This procedure is going to extract the closest version of a real-life scenario

where players play different games from different case studies in different stages.

Full Load Test

Parameters
argv1 argv2 argv3 argv4

50 2,3,4 N N

Average time/initialization 8s

The Apache server has been able to support and manage all the requests, queuing and

processing them to finally return the corresponding response. If more performance is required,

the server capacity must be increased to support it, but no further developments will be

needed since the Apache server is able to adapt its behaviour by only modifying its

configuration.

3.4 Browsers compatibility

Different web browsers react differently to the WebGL code that manages the visualisation of

up to tens of thousands of elements on the screen. Due to limited resources, work has been

done to ensure compatibility with two recent browsers that are available on all existing

platforms: Chrome (version 83.0.4103.116 -Official Build) and Firefox (version 77.0.1). Other

browsers such as Safari, or Edge would require additional work to ensure compatibility.

3.5 Screen resolutions

Overall, the User Interface was developed to be used from either a laptop or a desktop

computer. As such the Serious Game does not accommodate tiny touch screens for portable

devices such as smartphones or tablets. The user interface screen resolution is optimised for

60

the standard size 1920x1080 but can also cope with smaller or greater window sizes due to the

pan/zoom capability integrated into the design.

See the picture below where browsers windows of different sizes can be open to zoom and

pan on the same view.

Figure 17. Map view

Figure 18. Map view

61

3.6 Security

3.6.1 Login System

From a user point of view, the login system provides authentication and authorization through

a Json Web Tokens 8 (JWT) technology, which are an open, industry-standard RFC 7519 9

method for representing claims securely between two parties.

The JWT are established during the login process and shared during all the communications

through the cookies.

Several tests have been developed to validate this system and different approaches have

been followed to force it trying to break its security layer.

The login system relies on the Python Flask library and its extension for JWT. Thanks to it, all the

tests have been successfully conducted.

3.6.2 HTTPS

At a different level, another important issue related to the security topic is the communication

layer between the S4N clients and the S4N platform.

In this case, the communication is based on The Hypertext Transfer Protocol10 (HTTP), which is

an application protocol for distributed, collaborative, hypermedia information systems. In

terms of security, the S4N platform relies on Hypertext Transfer Protocol Secure11 (HTTPS), which

is an extension of the HTTP protocol. It is used for secure communication over a computer

network, and is widely used on the Internet. In HTTPS, the communication protocol is encrypted

using Transport Layer Security (TLS) or, formerly, Secure Sockets Layer (SSL). The protocol is

therefore also referred to as HTTP over TLS, or HTTP over SSL.

3.7 Resilience

As mentioned in D4.5, the KEE relies on the HTTP Apache Server12 to provide a secure, efficient

and extensible server that provides HTTP services in sync with the current HTTP standards. Thanks

8 https://jwt.io/
9 https://tools.ietf.org/html/rfc7519
10 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
11 https://en.wikipedia.org/wiki/HTTPS
12 https://httpd.apache.org/

https://jwt.io/
https://tools.ietf.org/html/rfc7519
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTPS
https://httpd.apache.org/

62

to the characteristics of this tool, together with the way the KEE has been designed and

implemented, the KEE has the required capacities to isolate any problem and continue

working while ensuring other basic characteristics such as availability, capacity,

interoperability, performance, reliability, robustness, safety, security, and usability.

The KEE has been designed as a Web Service which is finally hosted by the Apache server.

Once deployed, the Apache server distributes the incoming requests to different threads

where KEE replicas are listening. This level of parallelization allows the first idea of resilience

and, during the process of the request processing, the KEE has also different mechanisms (such

as an exceptions system) to catch any problem and continue working normally.

A simple, but clear, proof of its resilience is all the tests performed to validate its functionalities.

These tests finally succeed due to the KEE capacity to continue working in a normal way after

a problem appears (in this case forced fails).

Other services such the S4N databases delegate its functionalities to well known and

extensively validated tools like PostgreSQL13 or Apache Jena Fuseki14 which provides resilience

by default.

3.8 Scalability

Thanks to the way the S4N SG platform has been designed and the tools used to host it, the

different modules (UI, KEE and S4N databases) can be easily distributed along with different

servers. This modularity is a key characteristic that allows independence between S4N services

and finally results in a decoupled system.

Again, the way the KEE manages the data flows and the authentications procedures tolerates

distributed processes to scale the solution.

In the same line as the previous section, the Apache server acts as the first layer of scalability

to distribute the requests to KEE replicas. On the other hand, Docker infrastructure also provides

the needed mechanisms to scale other services to different Docker nodes.

13 https://www.postgresql.org/
14 https://jena.apache.org/documentation/fuseki2/

https://www.postgresql.org/
https://jena.apache.org/documentation/fuseki2/

63

As a proof, the load tests (section 3.3) show how the KEE can be escalated (through Apache

server configuration) to provide the needed capacity to support an increased number of

requests.

3.9 Interoperability

The interoperability capacity between the internal S4N SG platform modules has been

validated during all the tests. Based on different communication standards, the isolated

services are able to communicate between them in order to implement the desired data

flows.

Externally, the Semantic Repository represents an advance through the publication of an open

catalogue of Nexus information and their linkage with policy. We mean, the semantic

repository offers the community the possibility to analyse openly the implications of a policy in

certain topics (policy objectives) considering the Nexus. At the technology level, the main

innovation with the semantic repository relies on data navigation using facets. That means this

tool provides navigation through the information using the properties of the defined entities

(navigation using the semantics of the information).

Combining these both aspects, the SR contributes to semantic interoperability of the water

sector by offering a catalogue of variables under a common and standardised data model

as it is SAREF4WATR. Due to the use of these standardised data models, the semantic repository

offers common data exploration, accessibility and sharing.

64

4. User feedback

Feedback was provided from two training sessions in Azerbaijan (6) and in Greece (5) having

as participants members from the partners. Also, there were additional participants (26) of the

Dresden Nexus Conference 2020 (https://www.acteon-environment.eu/en/actualites/key-

message-dresde-nexus-2020/) in Germany.

Overall, the feedback from the end-users of SDM provided a positive attitude in the total

spectrum of questions around the Serious Game and the operating framework.

Exceptional was the outcome of engagement with SDM where more than 80% of people

found it engaging (see Fig.1), without having any negative response of avoiding it.

Figure 19: Response of engagement to the Serious Game

As regards the characteristics of the S4N SG to learning environments and its potential

contribution to the specific needs and prerequisites of learning outcomes, there was a

significant separation of results:

• Firstly, there was a mixed understanding from participants as regards the objectives of

learning specifications. However,

• most of them where above average in understanding it and personal learning from the

specific SG (cyan bars at Fig. 2); especially about the cross-sectoral impacts of water,

energy, food, land and climate policies applied for the case study in Greece (blue bars

on Fig. 2).

• a considerate number of participants had issues in understanding and learning from it

standing in between, while there were some participants providing even negative

response to the learning outcomes of the SG. Here, some proposals have been

provided as potential measures of further learning capacity of SG. The response of the

https://www.acteon-environment.eu/en/actualites/key-message-dresde-nexus-2020/
https://www.acteon-environment.eu/en/actualites/key-message-dresde-nexus-2020/

65

training sessions in Azerbaijan and Greece was divided: from Azerbaijan they have

been satisfied with the overall performance and goals of the platform, asking a

“pregame” as potential first base of “getting-to-know” the overall environment. The

responders from Greece have shown some more moderated enthusiasm,

understanding its capacity but finding it more complex in order to be played properly.

Figure 20: Response of learning impact of the S4N Serious Game

• Secondly, there was a complete, positive response to the use of S4N SG for learning

purposes to students, stakeholders and/or policymakers (Fig. 3), showing the overall

capacity of the SDM for learning purposes. Yet, there was a small percentage with

neutral thinking on that, providing some proposals that have to be taken under

consideration.

Figure 21: Response of potential of the use of S4N SG for learning purposes

66

• As regards the outcome of the nexus health results in the play session as a result of the

policies implemented, there was a mixed sharing of answers (Fig. 4) and, at a certain

point, there is a need to see more built-in explanation of game functionalities, cards,

graphs, nexus health etc. The successful deployment of S4N SG and further

dissemination of its use may stand upon the prerequisites that will erase issues that

caused confusion to participants.

Figure 22: Response of potential of the use of S4N SG for learning purposes

No software issues were detected during the sessions, nor new functionalities were requested

by the users.

Despite it was not identified by the final users, during the SG tests realized by S4N partners in

the PRE environment, it was identified the possibility to define a new view in the SG website to

show the results and decisions made by different players during their game sessions. Finally, this

idea was implemented through the Ranking page (see Figure 23), where the top players that

achieved the best nexus health scores for each CS are shown, followed by the leaderboard,

a list of all the previous users' sessions with their respective score and policy decisions.

67

Figure 23. S4N SG Ranking Page

68

5. SIM4NEXUS - SPACE

5.1 Introduction

Aim has been to develop process, and test satellite derived datasets for selected SDM

variables, and to evaluate the out produced for year 2019 following the schematic approach

of (Error! Reference source not found.). The short effort considered:

• Satellite data products specification

• Data preparation

• Application of the SDM

• Result evaluation

Figure 24: The S4N-Space Concept

69

5.2 Methodology

The methodology workflow is depicted in Figure 25:

Figure 25: Methodology Workflow

5.3 Satellite data and products specification

Study of available satellite datasets revealed that several of the variables used by the SDM

can be immediately replaced with satellite derived values (Table 24). Additional variables for

the SDMs or other applications can also be replaced via correlations.

Table 24: SDM variables - satellite products correspondence

VARIABLE SATELLITE PRODUCT

ET_OPEN_BODY

(EVAPOTRANSPIRATION)

TOTAL MONTHLY ACTUAL EVAPOTRANSPIRATION (ET) USGS

POPULATION GLOBAL HIGH-RESOLUTION POPULATION DENOMINATORS

PROJECT

BASIN_SURFACE WWF HYDROSHEDS

RICE_AREA CORINE

PASTURE_AREA >>

FRUIT_AREA >>

OLIVE_AREA >>

GRAPE_AREA >>

5.3.1 Evapotranspiration

70

Evapotranspiration (ET) is the sum of water evaporation and transpiration from vegetation. The

satellite data used to replace the standard evapotranspiration variable were derived from

version 4 SSEBop Evapotranspiration product produced by the United States Geological Survey

(USGS). The product consists of monthly images that represent evapotranspiration in millimeters

worldwide, with pixel size 1 km. From the USGS website

https://earlywarning.usgs.gov/fews/product/460#:~:text=Monthly%20Period&text=Evapotrans

piration%3A%20Evapotranspiration%20(ET)%20is,the%20period%202000%20to%20present. we

obtain the info: “Actual ET (ETa) is produced using the operational Simplified Surface Energy

Balance (SSEBop) model (Senay, et al. 2013) for 2003 to present. The SSEBop setup is based on

the Simplified Surface Energy Balance (SSEB) approach (Senay, et al. 2011) with unique

parameterization for operational applications. It combines ET fractions generated from

remotely sensed MODIS thermal imagery, acquired every 10 days, with reference ET using a

thermal index approach. The unique feature of the SSEBop parameterization is that it uses pre-

defined, seasonally dynamic, boundary conditions that are unique to each pixel for the

“hot/dry” and “cold/wet” reference points. The original formulation of SSEB is based on the hot

and cold pixel principles of SEBAL (Bastiaanssen, et al. 1998) and METRIC (Allen, et al. 2007)

models.”

5.3.2 Population

This dataset is produced with info from WorldPop (www.worldpop.org, School of Geography

and Environmental Science, University of Southampton; Department of Geography and

Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and

Center for International Earth Science Information Network (CIESIN), Columbia University

(https://www.worldpop.org/geodata/summary?id=26939).

It is the estimated number of people per grid cell, with resolution of 3 arc (approximately 100m

at the equator). The units are number of people per pixel with country totals adjusted to match

the corresponding official United Nations population estimates that have been prepared by

the Population Division of the Department of Economic and Social Affairs of the United Nations

Secretariat (2019 Revision of World Population Prospects). The mapping approach is Random

Forest-based dasymetric redistribution, which uses various satellite derived data products like

land cover, roads, building maps, satellite night lights, vegetation, topography, etc.

(https://www.worldpop.org/methods).

5.3.3 Basin surface

https://earlywarning.usgs.gov/fews/product/460#:~:text=Monthly%20Period&text=Evapotranspiration%3A%20Evapotranspiration%20(ET)%20is,the%20period%202000%20to%20present.
https://earlywarning.usgs.gov/fews/product/460#:~:text=Monthly%20Period&text=Evapotranspiration%3A%20Evapotranspiration%20(ET)%20is,the%20period%202000%20to%20present.
http://www.worldpop.org/
https://www.worldpop.org/geodata/summary?id=26939
https://www.worldpop.org/methods

71

HydroSHEDS is a mapping product that provides hydrographic information for regional and

global-scale applications in a consistent format (https://www.hydrosheds.org/). It offers a suite

of geo-referenced data sets (vector & raster) at various scales, including river networks,

watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on

high-resolution elevation data obtained during a Space Shuttle flight for NASA's Shuttle Radar

Topography Mission (SRTM). In the present case, the watershed boundaries were used to

calculate basin area for the SDM.

5.3.4 Land cover

CORINE Land Cover (CLC) inventory is part of the Copernicus Land Monitoring Service. It is

produced by the majority of countries by visual interpretation of high-resolution satellite

imagery. In a few countries semi-automatic solutions are applied, using national in-situ data,

satellite image processing, GIS integration and generalization

(https://land.copernicus.eu/pan-european/corine-land-cover). The CLC product is provided

in both vector and raster form. The raster version has a pixel size of 100m.

5.3.5 Additional satellite data

Sentinel-2 2A and Landsat-8 SR products were also used. Sentinel-2 carries the Multi Spectral

Instrument (MSI) sensor, which has the ability to capture spectral information in the visible, the

red-edge, the infrared, and the short-wave infrared part of the electromagnetic spectrum. The

spatial resolution ranges from 10m to 60m depending on the spectral band. Landsat-8 uses

the Operational Land Imager (OLI) which captures spectral information in the visible, the

infrared, and the short-wave infrared part of the electromagnetic spectrum (but not red-

edge). The spatial resolution is 30m, except on panchromatic and thermal bands, which are

15m and 100m, respectively. The detailed Large-Scale International Boundary Polygons

dataset was used to extract the Sardinian coastline shapefile. This dataset is provided by the

United States Office of the Geographer and can be accessed using this url:

https://catalog.data.gov/dataset/global-lsib-polygons-detailed-2017dec29.

5.3.6 Data preparation

To ensure the satellite data products would be compatible input variables to the SDM, pre-

processing steps were necessary.

CORINE

https://www.hydrosheds.org/
https://land.copernicus.eu/pan-european/corine-land-cover
https://catalog.data.gov/dataset/global-lsib-polygons-detailed-2017dec29

72

The CORINE dataset was downloaded and the area including Sardinia was clipped. The

corresponding CORINE classes used to represent the SDM variables are shown in Table 25

Table 25: SDM variables – CORINE classes correspondence

SDM VARIABLES CORINE CLASSES

RICE_AREA RICE FIELDS

PASTURE_AREA PASTURES

FRUIT_AREA FRUIT TREES AND BERRY PLANTATIONS

OLIVE_AREA OLIVE GROVES

GRAPE_AREA VINEYARDS

The above CORINE classes were then extracted in separate shapefiles (Figure 26). These

shapefiles represent the area of the selected classes for the year 2018. In order to calculate a

similar land cover map for the year 2019, a classification algorithm was employed.

Figure 26: Map of Sardinia with the selected CORINE classes

Land cover mapping:

73

Popular classification algorithms for land cover mapping include Random Forests (RF), Support

Vector Machines (SVM), and Neural Networks (NN). Two of these methods were tested for their

classification accuracy (SVM and RF) and Random Forests were found to perform higher.

Random forests is a popular classifier that has been extensively studied in land cover mapping

in recent years (Gislason, et al. 2006; Waske and Braun 2009; Pelletier, et al. 2016). Random

Forests is a machine learning algorithm, and as such, requires training data in order to be able

to classify.

The training data were extracted from both Sentinel-2 and Landsat-8 using CORINE classes as

labels and area indicators. Several spectral indices were calculated in order to improve the

classification result, including NDVI (Normalized Difference Vegetation Index) (Rouse Jr, et al.

1974), NDWI (Normalized Difference Water Index) (Gao 1996), BSI (Bare Soil Index) (Jamalabad

2004), EVI (Enhanced Vegetation Index) (Huete, et al. 1999), and MCARI (Modified Chlorophyll

Absorption in Reflectance Index – calculated only for Sentinel because of its red-edge band

requirement) (Daughtry, et al. 2000). The classification algorithm was written in the Google

Earth Engine’s code editor (https://code.earthengine.google.com/) and the classification

was performed using Google Earth Engine for six Sentinel-2 tiles and four Landsat-8 tiles needed

to cover Sardinia. Figure 3 shows a snapshot of the process of classification and validation

(Figure 27):

Figure 27: Snapshot of classification & validation carried out on Google Earth Engine

The validation was carried out by classifying a random selection of pixels from 2018 images

and validating with the CORINE labels from 2018 (Table 26).

Table 26: Classification overall accuracy

DATA SOURCE OVERALL ACCURACY

LANDSAT 69.82%

https://code.earthengine.google.com/

74

SENTINEL 75.83%

The results of both classifications were carefully studied, and the area for each predicted class

was calculated (Table 27):

Table 27: Total area for each class calculated from the classified images

LANDSAT SENTINEL CORINE

SARDINIA 2019

PREDICTIONS

SARDINIA 2019

PREDICTIONS

SARDINIA 2018 GROUND

TRUTH

LANDCOVER TOTAL AREA (KM2)

RICE FIELDS 0.945 0 50.2077

PASTURES 0 1.016 405.6913

FRUIT TREES 4.9257 257.366 100.0042

OLIVE

GROVES

137.9385 3.0816 414.7706

VINEYARDS 4.9257 13.4708 90.6166

Although, the overall accuracy of the classification was satisfactory, the predicted areas of

the selected classes had significant changes when compared to the ones derived from

CORINE for the year 2018. Thus, it was deemed that the results were unreliable, and the high

overall accuracy was attributed to high classification accuracy over water, which covers large

parts of the images. Instead of the classified images, the original CORINE areas were used,

assuming the actual changes in land cover from 2018 were less significant than those

predicted by the classification algorithm.

Total Monthly Actual Evapotranspiration dataset

Twelve images, representing the monthly actual evapotranspiration of 2019 were

downloaded. Each pixel value represented the evapotranspiration in millimeters (Figure 28).

75

Figure 28: Monthly actual evapotranspiration maps for the year 2019

Since the SDM takes as input the evapotranspiration in open bodies of water, the intersection

of monthly actual evapotranspiration and the inland water shapefile from CORINE was

calculated and the pixel values of the resulting rasters were summed to the total

evapotranspiration for each month of 2019.

WolrdPop dataset

The Italian population data for the year 2019 were downloaded and clipped using the

Sardinian coast shapefile (Figure 29). The pixel values represented the population count and

were summed to calculate the total Sardinian population.

76

Figure 29: Population map of Sardinia for the year of 2019

HydroSHEDS

The SDM required the area of only the basins that contributed to the largest water reservoirs.

By filtering the inland water shapefile from the CORINE dataset, a shapefile containing only

bodies of inland water with above average area was created. The basins from the HydroSHEDS

dataset that contained the aforementioned large bodies of water, were then selected and

their total area was calculated (Figure 30).

77

Figure 30: Basins contributing to the largest water bodies

5.4 Application of the SDM

The data derived from the satellite sources replaced the variables:

• ET_open_body

• Basin_surface

• Population

• Rice_area

• Pasture_area

• Olive_area

• Grape_area

• Fruit_area

78

The ET_open_body variable was inserted to the SDM with a CSV file, while the other variables

were initialized inside the script. The Python script containing the SDM was executed once with

the standard inputs and once with the new satellite derived inputs.

5.5 Results & Comments

The results produced are shown in Table 28, Figure 31 and Figure 32. It is apparent that:

• Results calculated with the “standard” inputs are quite similar to the results calculated

with “satellite” derived inputs.

• The difference between the two results increases up to a point and then stays relatively

stable (Error! Reference source not found.).

This was a short effort aimed to demonstrate the use Copernicus and other satellite data in the

implementation of S4N. We believe however:

• The effort was worth because it proves that S4N can in the future take advantage of

satellite data and in this context to produce applications faster and easier.

• Assuming an appreciable effort is devoted, it is more or less certain, that a large

percentage of the S4N Input can be derived from satellite data for multiple SDMs.

• The above leads to conclusions that S4N Nexus can be re-designed, to accommodate

and relax a user from cumbersome input, via a “preprocessor” to be based on satellite

data and readily available databases. This can lead do an upgraded product that

can be world-wide applied if redesigned to accommodate to a large extent satellite

and readily available databases.

• The above leads the road to a “next effort” aimed to broaden the current S4N to a

S4N-space.

Table 28: Reservoir stock calculated from standard and satellite derived inputs

STANDARD INPUTS SATELLITE DERIVED INPUTS

T RESERVOIR

0 2000 2000

1 2093.918 2064.891

2 2103.674 2030.855

3 2097.636 1951.012

4 2075.567 1823.877

5 1895.131 1532.872

6 1613.884 1155.646

7 1331.442 804.4948

8 1183.179 620.1981

9 1129.173 552.6637

10 1134.255 551.2428

79

Figure 31: Reservoir stock calculated from standard inputs

Figure 32: Reservoir stock calculated from satellite derived inputs

Figure 33: Standard and satellite derived inputs comparison

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13

Standard and satellite derived inputs comparison

Standard inputs Satellite derived inputs Difference

80

5.6 References

Allen, R. G., M. Tasumi and R. Trezza (2007). Satellite-based energy balance for mapping

evapotranspiration with internalized calibration (METRIC)—Model Journal of irrigation and

drainage engineering 133(4): 380-394.

AURORA (2016-2019). AURORA: Advanced Ultraviolet Radiation and Ozone Retrieval for

Applications. Contract No. H2020-EO-2015/687428 funded by the European Commission H2020

Programme. Coordinated by CONSIGLIO NAZIONALE DELLE RICERCHE, Italy. CORDIS

database and http://www.aurora-copernicus.eu/

Cortesi, U., M. Bonazountas, A. Argyridis, K. Verberne, C. Tirelli, V. Palla (2018). A NOVEL

APPROACH FOR ULTRAVIOLET RADIATION AND OZONE RETRIEVAL VIA COPERNICUS FOR

APPLICATIONS: THE “AURORA” PARADIGM. Virtualis: Social, Spatial and Technological Spaces

in Real and Virtual Domains, EDITOR: PROF SAVIOUR FORMOSA, UNIVERSITY OF MALTA, GATE:

https://www.researchgate.net/profile/Saviour_Formosa; Targeted Publication in 2021

Cortesi, U. et al (2019). Working with Copernicus for our Future, abstract and oral presentation

at National Conference on Copernicus Systems and Application for the Philippines, 11 March,

2019

Bastiaanssen, W. G., M. Menenti, R. Feddes and A. Holtslag (1998). "A remote sensing surface

energy balance algorithm for land (SEBAL). 1. Formulation." Journal of hydrology 212: 198-212.

Daughtry, C., C. Walthall, M. Kim, E. B. De Colstoun and J. McMurtrey Iii (2000). "Estimating corn

leaf chlorophyll concentration from leaf and canopy reflectance." Remote sensing of

Environment 74(2): 229-239.

Gao, B.-C. (1996). "NDWI—A normalized difference water index for remote sensing of

vegetation liquid water from space." Remote sensing of Environment 58(3): 257-266.

http://cordis.europa.eu/project/rcn/199475_en.html
http://www.aurora-copernicus.eu/
https://www.researchgate.net/profile/Saviour_Formosa

81

Gislason, P. O., J. A. Benediktsson and J. R. Sveinsson (2006). "Random forests for land cover

classification." Pattern Recognition Letters 27(4): 294-300.

Huete, A., C. Justice and W. Van Leeuwen (1999). "MODIS vegetation index (MOD13)."

Algorithm theoretical basis document 3(213).

Jamalabad, M. (2004). Forest canopy density monitoring using satellite images. Geo-Imagery

Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 2004.

Mils, A., M. Bonazountas (2019). COPERNICUS: National Conference on Copernicus Technology

and Applications, European Union Brings together the Copernicus program to the Philippines.

Final report, Contract No. 2018/402508, EC Brussels, COWI Coordinator.

https://eeas.europa.eu/delegations/philippines/59354/european-union-brings-copernicus-

programme-philippines_ar

Pelletier, C., S. Valero, J. Inglada, N. Champion and G. Dedieu (2016). "Assessing the robustness

of Random Forests to map land cover with high resolution satellite image time series over large

areas." Remote sensing of Environment 187: 156-168.

Rouse Jr, J., R. Haas, J. Schell and D. Deering (1974). Paper A 20. Third Earth Resources

Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space

Flight Center at Washington, DC on December 10-14, 1973: Prepared at Goddard Space Flight

Center, Scientific and Technical Information Office, National Aeronautics and Space ….

Senay, G. B., S. Bohms, R. K. Singh, P. H. Gowda, N. M. Velpuri, H. Alemu and J. P. Verdin (2013).

"Operational evapotranspiration mapping using remote sensing and weather datasets: A new

parameterization for the SSEB approach." JAWRA Journal of the American Water Resources

Association 49(3): 577-591.

Senay, G. B., M. E. Budde and J. P. Verdin (2011). "Enhancing the Simplified Surface Energy

Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model."

Agricultural Water Management 98(4): 606-618.

https://eeas.europa.eu/delegations/philippines/59354/european-union-brings-copernicus-programme-philippines_ar
https://eeas.europa.eu/delegations/philippines/59354/european-union-brings-copernicus-programme-philippines_ar

82

Sušnik, J., Chew, C., Domingo, X., Mereu, S., Trabucco, A., Evans, B., ... & Brouwer, F. (2018).

Multi-stakeholder development of a serious game to explore the water-energy-food-land-

climate nexus: The SIM4NEXUS approach. Water, 10(2), 139.

Waske, B. and M. Braun (2009). "Classifier ensembles for land cover mapping using

multitemporal SAR imagery." ISPRS Journal of Photogrammetry and Remote Sensing 64(5): 450-

457.

83

Conclusions

Following the planning depicted in the Grant Agreement, the current version of the SIM4NEXUS

Serious Game tool implements all the defined modules (GUI, KEE, S4N Database and SDM

Engine) and provides all the requirements needed to play the SIM4NEXUS Game and achieve

one of the main SIM4NEXUS project goals.

In order to integrate and manage all the S4N modules, the S4N Integration Centre has been

accurately designed and developed to finally coordinate the SIM4NEXUS platform, which

includes several development envirnoments.

In addition, five Case Studies have been already fully integrated, Greece, Azerbaijan, Latvia,

the Netherlands and the southwest of the UK, thus making possible the interaction with them

through the GUI and the final test to validate the expected and correct behaviour of each

one. In parallel, the Global Case Study has developed a demo tool which can be accessed

through the S4N SG platform.

Finally, to provide a high-quality system in terms of availability, capacity, interoperability,

performance, reliability, robustness, safety, security, resilience and usability, several tests have

been developed and integrated to the S4N Integration Centre to validate the S4N SG

performance covering the previously mentioned topics.

Through the present document, the S4N IC and all these validation and testing tasks have

been documented and exhaustively described.

As proof, the latest version of the Serious Game GUI and the underlying connected KEE, S4N

database and SDM Engine are available and free to play at this URL:

https://seriousgame.sim4nexus.eu/.

https://seriousgame.sim4nexus.eu/

