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A B S T R A C T

There is increasing interest in the global water-energy-food (WEF) system and potential system trajectories,
especially considering growing concerns over resource exploitation and sustainability. Previous studies in-
vestigating different aspects of this system have a number of shortcomings, meaning it is difficult to identify
system-wide tradeoffs, and makes comparison difficult. A global analysis of the WEF system linked to gross
domestic product (GDP) growth is presented, integrating the four sectors into a coherent analysis and modelling
framework. GDP was included as previous related work demonstrates a link between GDP and each WEF sector.
A system dynamics modelling approach quantifies previously qualitative descriptions of the global WEF-GDP
system, while a Monte-Carlo sampling approach is adopted to characterise national-level variability in resource
use. Correlative and causal analysis show links of varying strength between sectors. For example, the GDP-
electricity consumption sectors are strongly correlated while food production and electricity consumption are
weakly correlated. Causal analysis reveals that ‘correlation does not imply causation’. There are noticeable
asymmetries in causality between certain sectors. Historical WEF-GDP values are well recreated. Future sce-
narios were assessed using seven GDP growth estimates to 2100. Water withdrawals in 2100 and food pro-
duction in 2050 are close to other estimations. Results suggest that humanity risks exceeding the ‘safe operating
space’ for water withdrawal. Reducing water withdrawal while maintaining or increasing food production is
critical, and should be decoupled from economic growth. This work provides a quantitative modelling frame-
work to previously qualitative descriptions of the WEF-GDP system, offering a platform on which to build.

1. Introduction

It is becoming increasingly clear that we live in a ‘hyperconnected’
world (World Economic Forum, 2016) in which natural resource ex-
ploitation and human development are bound together in an extra-
ordinarily complex system. An important event to make explicit this
system and to bring it to the wider consciousness was the Bonn Nexus
Conference in 2011 (Hoff, 2011), which focussed particularly on the
water-energy-food (WEF) nexus. Since then, the ‘classical’ WEF nexus
has evolved to include land use, the environment, climate change, and/
or the economy (e.g. WWF and SABMiller, 2014; Sušnik, 2015; WWAP,
2015; Fasel et al., 2016; Feng et al., 2016; World Bank, 2016; World
Economic Forum, 2016). It has been expanded to cover human devel-
opment and mental health (Biggs et al., 2015; Fabiola and De Rosa,
2016; Hernandez, 2016; Sušnik and van der Zaag, 2017), and in some
cases has been ‘shrunk’ to become more focussed, for example in de-
tailed investigations on (urban) water-energy relationships (e.g.
Kenway et al., 2011; Davies et al., 2013; Holland et al., 2015; Hussein
et al., 2017; Valek et al., 2017). Steffen et al. (2015) alluded to this
complex system when the idea of planetary limits was put forward. It is
increasingly clear that which of these planetary limits are exceeded,

when, and by how much, are related to each other (e.g. the volume of
water required for all uses will change as energy demand changes, as
the energy mix changes, and as diets change globally). Others have used
different terms to mean a complex system connected at the global scale,
and in which actions to one sector can have significant impacts on other
sectors, sometimes without prior knowledge of these connections even
existing (e.g. the idea of ‘teleconnections’, especially in the climate
system; Najibi et al., 2017). Global think-tanks and multinational cor-
porations are showing increased interest in the nexus and its potential
implications to business (e.g. IMechE, 2013; WWF and SABMiller, 2014;
EEA, 2015; World Bank, 2016; World Economic Forum, 2016). Some
major European Union research projects focussing on the nexus have
recently begun, of which two merit particular attention: SIM4NEXUS
(Sustainable Integrated Management FOR the NEXUS of water-land-
food-energy-climate for a resource-efficient Europe; www.sim4nex-
us.eu), which assesses policies and pathways in the water, food, energy,
land and climate sectors that will help enable a resource efficient
Europe and which will develop a policy-maker interfacing serious game
based on state-of-the-art science. MAGIC (http://magic-nexus.eu/) is
focussed on policy and integration, and is testing how changes to policy
can contribute to a more efficient nexus in Europe.
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Despite the increased interest, and the considerable increase in
‘nexus’ literature, there is a distinct lack of quantification as to how this
system behaves. This is unsurprising given that ‘nexus’ means different
things to different groups. At present, many studies qualitatively de-
scribe various nexus relationships (e.g. Cai et al., 2017), explaining how
(in principle) changes to one nexus system sector (e.g. water) may
impact on other system sectors (e.g. electricity generation). Where
quantitative studies have been carried out, they usually either:

i) focus on a small part of a wider system, for example water and
energy interactions only (e.g. Valek et al., 2017);

ii) focus on specific case studies that are detailed quantitatively, but
can lack the generality to enable wider application (e.g. Hussein
et al., 2017);

iii) some combination of (i) and (ii).

There are a few example of studies that are detailed and that cover a
wider area or many sectors. Arguably the earliest global study on a
nexus (in this case the relationships between population, human ca-
pital, agriculture and pollution) was that of Meadows et al. (1972).
While initially this study was denounced and its conclusions dismissed,
40 years of subsequent data have revealed that some of the major global
system sector trajectories were predicted reasonably well (Turner, 2008;
Hall and Day, 2009; Turner, 2009), with hindsight allowing numbers to
be placed on the y-axes of the Meadows et al. charts, which originally
were without a scale (contributing to some of the early dismissal).

The World3 model of Simonovic (2002) is based on the system
dynamics modelling (SDM) paradigm (Ford, 1999; Capra and Luisi,
2014). It analyses the consumption of global water resources. Despite
its narrow focus, the model includes interaction with the agricultural
and industrial sectors, as well as consideration of pollution and popu-
lation. While the model is broadly applicable at the global scale, and
acknowledges the close relationship between these sectors and the
economy, it uses data that are now quite old (> 20 years). World3
makes some useful projections of the global water inventory based on
gross-scale global system dynamics.

As more recent examples, Feng et al. (2016) use SDM to explore the
water-power-environment nexus in Hehuang Region, China. Although
spatially very limited, with restricted ability to scale up the conclusions,
the study uses comprehensive data across a number of sectors to project
water, power and environmental parameter trajectories into the near
and far futures, attempting to quantify the system on a local scale and
understand its long-term dynamics and evolution. Chen et al. (2018)
use a multi-region input-output (MRIO) analysis to show the connection
between agricultural production, freshwater use and international
trade. It is shown that in general, resource-rich, less-developed coun-
tries transfer resources to resource-poor, well-developed countries, and
that land productivity and water productivity generally show an inverse
relationship.

While there is increasing interest in describing the ‘nexus’, and
while there are more efforts going to better understand different sys-
tems, robust quantification of the WEF system, interaction between
these sectors and their relationship to the economy through the proxy
of gross domestic product (GDP) is lacking on a global level. Fig. 1
shows a familiar schematic of the WEF system linked to GDP. Boxes
show the WEF-GDP sectors, and arrowed lines denote connections be-
tween the sectors. What form do these relationships take? How can
change in one sector be used to estimate change in another? How can
the inherent uncertainty involved when making global-scale observa-
tions be accounted for? In which way do causal relationships operate?
Are the connections of a reinforcing mechanism (c.f. runaway green-
house warming), or of a balancing mechanism (c.f. birth-death dy-
namics in classical population models)? How strong, relatively, are
these relationships between sectors? These are questions that, so far,
have not been well answered, and Fig. 1 remains largely a qualitative
description of this globally critical system rather than a quantitative

tool.
Using global level data at national resolution over the past c. 50

years, the aim of this work is to quantify, at the global level based on
national-scale data, the WEF-GDP system in terms of:

a) acorrelation between system sectors;
b) the uncertainty and scatter between these sectors;
c) causal relationships between the sectors, and;
d) system trajectories to 2100 under several economic growth sce-

narios.

This work aims to add quantification to the currently qualitative
Fig. 1, and to start to address some of the main gaps in current un-
derstanding described above. In this paper, the focus is the water-en-
ergy-food nexus and the link to national economies (GDP). The link to
GDP was made explicit by Sušnik (2015) who shows that water, energy
and food metrics correlate closely with GDP. In this paper, the word
‘system’ is used in place of ‘nexus’ to make explicit the point that this
system is in essence observable, quantifiable and able to be modelled
robustly in order to i) determine underlying dynamics and; ii) create
scenarios of potential system development under global change.

2. Data and methods

2.1. Data

This study uses data from many sources to form relationships be-
tween WEF and GDP metrics. All data are at national resolution, and
cover over 175 countries representing almost all socio-demographic-
economic conditions since the 1960′s. Table 1 summarises the data.
Some of the data and results presented in this paper are based on the
analysis presented in Sušnik (2015). In such cases, details will not be
repeated here, and the reader is referred to Sušnik (2015). The most
relevant and important results from the previous work are summarised
when required. The three analyses that are used here from Sušnik
(2015) are: GDP→ total national water withdrawals; GDP→ total na-
tional food production and; GDP→ total national net electricity con-
sumption.

Total water withdrawal is a measure of all the water withdrawn in a
nation from all sources. Water withdrawn is not the same as water
consumed (i.e. water ‘lost’ from a system, through evaporation for ex-
ample), which is generally lower. However, data on water withdrawn
can be more reliable than for water consumed, and was used here as a
measure of the pressure on available water resources. It is likely that
substituting water withdrawals for water consumption would affect the
results, however predicting how the results might change is difficult.
For example, some energy-generating processes withdraw a lot of
water, but consume relatively little, and vice-versa. It is probable that
increases in energy generation will lead to increases in water con-
sumption generally. It is likely that relationships would remain, but

Fig. 1. Schematic representation of the water-energy-food-economy system. Every sector
interacts with every other sector in the system.
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would differ from those found in this study. For food production, the
national total is the sum of the following food classifications from the
FAOSTAT database: cereal crops, root crops, pulses, treenuts, oil crops,
vegetables, fibre crops, fruit, citrus crops and grain crops. National net
electricity consumption is used as a measure of energy demand. It is
very closely correlated with national net electricity generation (Sušnik,
2015), and in this sense the two can be used interchangeably with little
impact on results.

The new relationships in this paper that extend the work of Sušnik
(2015) are those between the remaining WEF system sectors: total na-
tional water withdrawals – total national food production; total na-
tional water withdrawals – total national net electricity consumption;
and total national net electricity consumption – total national food
production. In addition, the three relations in Sušnik (2015) and the
relations above were analysed in reverse. In total therefore, 12 relations
are analysed, representing all the couplings in Fig. 1.

2.2. Methods: correlation and causality

First, the data of WEF and GDP were plotted in pairs to analyse
potential correlation. Correlated data pairs were then assessed for their
best-fit statistical distribution. Finally, correlated data pairs were ana-
lysed for causality. These three steps are described below in detail.

1) Correlation between data pairs. The general process is almost the
same as that described in Sušnik (2015), but with some important
differences. Therefore, the process is described again:

i) Match country names between independent and dependent vari-
ables. Variations on country names were accounted for (e.g. United
States and United States of America). Exclude non-matches.
Exclusion represents a small number of countries (∼10-20).

ii) For matched datasets (dependent and independent), data were ra-
tionalised to make them directly comparable, country-by-country,
year-by-year. Null/empty data were treated as a blank.

iii) Rationalised data were processed to include instances where there
was a data entry for a given country and a given year in both me-
trics. If both metrics had no data, or if only one metric had data,
these instances were excluded from further analysis.

iv) Final data were plotted (x-y scatter) to identify regression re-
lationships between metrics. Plotting was done for all data com-
bined (i.e. all countries and years together).

For the correlations outlines above, the strength of the correlation
was assessed by a best-fit regression line through the data points to-
gether with the coefficient of determination (R2) parameter. There are
variable degrees of scatter in the correlations. In order to quantify such

scatter, a best-fit distribution analysis was carried out for each corre-
lated pair. This is described next.

2) Analysis of the best-fit distribution. The best-fit regression
through data points essentially gives an ‘average’ prediction of the
dependent variable, and the R2 gives an idea of the scatter. A MATLAB
routine (allfitdist.m1) was used to assess the best-fit statistical dis-
tribution of correlated data pairs, and to derive the statistics of these
distributions. The same data series’ used in the correlations were used
to determine best-fit distributions. Data are entered into the routine
which returns the best-fit distribution and descriptors of the distribu-
tion. The best-fit distribution is chosen from a set of 17 distributions
(see Sušnik, 2015 for a full list). This analysis quantifies the spread
around the ‘mean’ given by the regression analysis. Regional differences
in socio-economic growth and the historical development in WEF re-
source use will lead to locally different national/regional relationships
than the global-average assessed here. Some of this variation is cap-
tured in the best-fit distributions. Future studies at the regional or na-
tional levels could be carried out to investigate in more detail these
differences.

3) Analysis of causality between correlated pairs. The causality
analysis used the same procedure as Sušnik (2015). For an extensive
description of the original development of the convergence cross
mapping methodology (CCM), the reader is referred to Sugihara et al.
(2012). For full details of the modified multispatial CCM (mCCM)
methodology used in this paper, the reader is referred to Clark et al.
(2015) and Sušnik (2015). These papers outline the full development,
mathematics and application of the (m)CCM methods used here. In this
study the ‘plots' are the countries and the ‘observations' are the metrics
reported at various intervals (see Clark et al. (2015) for a full ex-
planation regarding plots and observations). It is assumed here that the
gross-scale dynamics between WEF variables and with GDP are every-
where similar. For this analysis, the code of Clark et al. (2015), avail-
able as a package in the R programming language (R Core Development
Team, 2014), was adapted for this study.

2.3. Methods: quantitative modelling of the WEF system

Quantitative modelling aimed at: i) replicating historical data, ac-
counting for the variability in national observations; and ii) defining
trajectories of this global system into the future. A system dynamics
modelling (Ford, 1999; Kelly et al., 2013) approach was used to build
the WEF-GDP system. SDM was utilised for its ability to account for

Table 1
Summary statistics of the data used in this study.

Metric Total number of
countries used in
analysisa

Temporal coverage [min range; maximum range; completeness] Data source

Total GDP 203 1960–2013 [1 year; 54 years; variable completeness from totally complete
1960–2013 to patchy or single entry]

World Bank (August 2014; http://data.
worldbank.org)

Total national water
withdrawal

183 1962–2012. Data are reported in approximately five-year intervals, although
the reporting period varies between countries. Data are more complete after
the 1980′s. [1 entry; 9 entries; variable from complete records to only one
value entered]

UN FAO AQUASTAT database (August
2014)

Total national crop
productionb

176 1961–2013. Data are reported at annual intervals for each country. [8 years;
complete coverage; where data are available, coverage is good.]

UN FAOSTAT database (August 2014)

Total national net electricity
consumption

184 1980–2011. Data are reported at annual intervals for each country. [6 years;
complete coverage; where data are recorded, coverage is good]

US Energy Information Administration
(www.eia.gov; August 2014)

a This is the total number of countries with at least one data entry in the timeseries. These countries are not all necessarily used in the relationship analyses, which depends on there
being corresponding data available in both of the variables. Only when data for a given value and year are available in both parameters is that country used. See text for details.

b The total crop production is the sum of many different crop types from the UN FAOSTAT database. See Table 1 in Sušnik (2015) for all the crop types included in this calculation.
Production is measured in kg yr-1.

1 Available from https://nl.mathworks.com/matlabcentral/fileexchange/34943-fit-all-
valid-parametric-probability-distributions-to-
data?requestedDomain=www.mathworks.com
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feedback between (sub-)systems in an explicit manner, and for the
ability to be able to integrate data from many disparate sectors. The
ability to perform Monte-Carlo simulations was also crucial. The latest
version of STELLA Professional (www.iseesystems.com/) was used to
carry out the simulations in this paper.

The developed model uses a feedback-driven stock and flow struc-
ture (cf. Ford, 1999) in order to estimate the global value of each WEF-
GDP sector for the period 1961–2013 (54 years, reflecting the resolu-
tion of input data). In the SD model, each sector (WEF and GDP) is
linked to all the other sectors (Fig. 1), with the quantitative relation-
ships between each link defined by the correlation, distribution and
causality work described above. The WEF-GDP sectors are initialised
with global values from 1961. Subsequently, all results are computed by
the model and do not depend on historical data. That is, the model is
driven by the interacting relationships between the WEF-GDP sectors.
For any timestep, the change in a given sector’s value from the previous
timestep is added to the previous value. This new value then affects the
values for the other three WEF-GDP sectors in the next iteration, which
in turn influence the original sector’s value, and so on. As an example,
while certain relationships may be linear (e.g. water→ food), a change
in the water sector feeds through every other sector. A change in water
causes a linear change in food only when considered in isolation.
However, a change in water also changes energy and GDP values. These
new energy and GDP values contribute to changing the food value (as
the value for food is determined by changes in water, energy and GDP
in a given timestep. The values for water, energy and GDP also depend
partially on the value for food). This means that complex and non-linear
changes are brought about from initially simple-looking relationships.
In addition, Monte-Carlo sampling means that ultimately the final value
for any sector resulting from changes in another is unpredictable.

The value of the WEF-GDP sectors is computed from: i) the regres-
sion relationships defining the ‘mean’ of the dependent variable based
on the values of the independent variables; ii) the best-fit statistical
distribution accounting for between-country variability; and iii) the
causal analysis to determine the fractional contribution of one sector on
another. The SDM was run as a Monte-Carlo simulation, with each si-
mulation repeated over 100 iterations. In each iteration, new values
from the best-fit distributions for each WEF-GDP sector were pseudo-
randomly sampled and added/subtracted from the ‘mean’ found from
the best-fit regressions. Finally, the causal analysis was used to inform
the fractional contributions of three sectors to any given sector.
Initially, for any given sector an equal contribution of 0.33 was selected
from the three affecting sectors. Using the causal analysis as a guide and
trial-and-error, these contributions were adjusted until the results clo-
sely matched observations. The final fractional contributions to/from
each sector are shown in Table 2. The results from the SD simulations
were exported to text files and analysed further in R.

Initially, historical values were replicated for validation. After va-
lidation, the model was used to project WEF and GDP variables to 2100
under seven GDP growth scenarios. These scenarios are the same as
Sušnik (2015):

1) The IMF 2014–2019 global average GDP growth rate of 3.8% yr−1

was assumed to remain constant from 2020 to 2100 for all countries.
2) Country-level GDP data for 214 countries from 1960 to 2013 from

the World Bank was used (data.worldbank.org). The GDP for each
nation was summed for each year during this period, giving an an-
nual global GDP estimate from 1960 and 2013. The percentage
change in globally-estimated GDP between two years (e.g.
1960–1961, 1961–1962, etc.) was calculated. Linear regression
through the%-change time-series yielded the following: GDP%
change=−0.1319*(YEAR) +12.023. This allows GDP to be esti-
mated from one year to the next. This equation was assumed to be
valid until 2100, and was used to estimate GDP annually from 2020
to 2100.

3) A constant GDP growth rate from 2020 to 2100 of 2% yr−1 was
assumed.

4) A constant GDP growth rate of 5% yr−1 was assumed.
5) A constant GDP growth rate of −2% yr−1 was assumed.
6) A constant GDP growth rate of −4% yr−1 was assumed.
7) The IMF dataset was exploited to yield country-level estimates of

GDP growth from 2014 to 2019. For each country, the average
projected GDP growth from 2014 to 2019 was calculated. This
country-level average was assumed constant for that country from
2020 to 2100. The future GDPs for 189 countries were estimated
based on the specific growth rates, then aggregated for each year,
giving annual global GDP estimates from 2020 to 2100. In the SD
model the change in GDP between years for this scenario was
evaluated using: GDP%-change=0.0492*(YEAR)+3.3269.

Changes in GDP growth rates were used as the scenarios under the
assumption that GDP, on the gross-scale, encapsulates global changes in
socio-economic conditions, and therefore goes some way to re-
presenting the variations between the Shared Socioeconomic Pathways
(SSPs). It is noted that historical GDP is estimated by the model using
the relationships developed above. However, after 2020, the GDP es-
timations are forced with a growth rate corresponding to one of the
scenarios above, which in turn will have an impact on the WEF sectors.
The range of scenarios tries to express the future uncertainty of global
GDP growth, from strong positive growth to strong negative growth.
The scenarios also combine data from different sources and at different
scales.

3. Results

3.1. Correlation between system sectors

The correlations for GDP with total national water withdrawal, net
electricity consumption and food production were carried out by Sušnik
(2015). The main points are reiterated. GDP was shown to be well
correlated to total national water withdrawals (Table 3; Sušnik, 2015,
Fig. 7d). An R2 of 0.57 suggests that the relationship between these
sectors undergoes different underlying dynamics between countries.
GDP is shown to be very strongly correlated to total national net elec-
tricity consumption (Table 3; Sušnik, 2015, Fig. 8b). GDP and total
national food production show a moderate relationship (Table 3).

The study of Sušnik (2015) correlated the above pairs in one di-
rection with GDP as the independent variable. Here, these correlations
are reversed to place the WEF metrics as the independent variables
(Table 3). It is noted that in all regressions, the p-value statistic
is< 0.01. With water as the independent variable (Fig. 2a), R2 is 0.58,
and the best fit was found to be a second-order polynomial. For food
production plotted with GDP, an exponential fit was found to be best,
with R2 of 0.5. For electricity consumption as the independent variable,
the best fit was also an exponential function, with R2 of 0.9 (Fig. 2b).

Total national water withdrawals are well correlated to total na-
tional food production (Table 3, Fig. 3a). A linear regression offered the
best fit (R2 of 0.71). This relationship appears to strengthen at higher
volumes of water withdrawal, with less scatter evident towards the
right hand side of Fig. 3a. When plotted the other way round, a linear
function was found to have the best fit (R2= 0.71).

Table 2
Final fractional contributions of each WEF-GDP sector used in the system dynamics
model.

From/To Water Food Energy GDP

Water 0.05 0.15 0.2
Food 0.33 0.05 0.2
Energy 0.33 0.05 0.6
GDP 0.33 0.9 0.8
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Total national water withdrawals are reasonably correlated with
total national net electricity consumption (Table 3, Fig. 3b). The R2

(0.65) indicates some scatter from the regression line. Unlike with the
water-food correlation described above, the amount of scatter about the
best-fit regression appears consistent across the data set. When the
plotting was reversed, the R2 of the best-fit regression is 0.65. Water
and energy have been shown to be closely related (Olsson, 2012; Davies
et al., 2013; Liu et al., 2016), so finding a correlation is not surprising.

Total national net electricity consumption and total national food
production shows a weaker correlation with more variability (Fig. 3c).
The R2 values are 0.5 and 0.55 when energy and food are the in-
dependent variables respectively.

3.2. Best fit distributions of global sectoral data

The best-fit distributions of each sector to quantify the scatter
around the best-fit regressions are summarised in Table 3. It is pointed
out that to arrive at the distributions, data for every country and every
year were used, accounting for spatial and temporal differences in each
WEF-GDP sector.

3.3. Causality between sectors

The slope of correlative relationships suggests the polarity of causal
influence. For example, a (linear) increase in y as x increases implies a
positive polarity and vice-versa. In this work, all sector pairs are shown
to have positive polarity. The mCCM method allows for assessment of
the relative strength of causality between metric pairs, however it is not
possible to assess the strength of causality of one pair relative to other
pairs. GDP is shown to have a stronger causal influence on water
withdrawals than the other way round (Fig. 4a). However, the rho
value (y-axis) is not high in either direction, indicating moderate causal
influence. The rho value represents a correlation coefficient (calculated
as such) indicating the extent to which one variable cross maps to an-
other. The rho indicates the skill of the cross-mapping. It signifies the
relative strength of causality between two parameters (A→ B and B→
A). Lower rho values indicate lower relative causal influence, and vice-
versa. Fig. 4 show how quickly convergence occurs during the CCM
process, and to what extent (higher or lower rho). Quicker convergence
(time to stability) and higher rho values indicate stronger causal effects.
A full explanation of CCM and the rho value, along with mathematical
background is given in Sugihara et al. (2012).

Likewise, GDP appears to influence food production more than the
other way round (Fig. 4b), but here the rho value is higher (c. 0.8)

Table 3
Best-fit regressions relationships between the four sectors (WEF and GDP), and best-fit statistical distribution of each sector. All regressions have a p-statistic< 0.01.

Sectoral pairing Best-fit regressionb Adjusted Rb Number of correlated points
(n)

GDP→ total national water withdrawala y=−0.0446×b+1.7509 x− 12.932 0.57 243
GDP→ total national food productiona y=−0.0316×b+1.3624 x− 0.9717 0.51 3704
GDP→ total national net electricity consumptiona y= 10.573ln(x)− 23.771 0.9 2555
Total national water withdrawal→GDP y=0.0651×b+0.6669x+ 9.9875 0.58 243
Total national food production→GDP y=5.1018e0.0701x 0.51 3704
Total national net electricity consumption→GDP y=9.5226e0.0856x 0.9 2555
Total national water withdrawal→ total national food production y= 0.8223x+9.3133 0.71 472
Total national water withdrawal→ total national net electricity

consumption
y= 0.8312x+0.583 0.65 453

Total national net electricity consumption→ total national food
production

y= 0.6536x+9.0592 0.5 4964

Total national food production→ total national water withdrawal y= 0.8628 x− 7.9165 0.71 472
Total national net electricity consumption→ total national water

withdrawal
y= 0.7889 x− 0.3335 0.65 453

Total national food production→ total national net electricity
consumption

y= 0.1659×b− 2.2934x+7.2638 0.55 4964

Sector Best fit statistical distribution
GDP Gamma. Shape: 93.2779; scale: 0.1080
Water withdrawalsa Normal. Mean: from regression equation; SD: 1.0885
Food productiona Weibull. Scale: 9.9291; shape: 10.1852
Electricity consumption Normal. Mean: from regression equation; SD: 1.1577

a Results originally from Sušnik (2015).
b x is always the independent variable (the first of the variables in the left-hand column), y is the metric of interest on the right of the metric pairs. SD= standard deviation.

Fig. 2. a) correlation with water withdrawals as the independent variable against GDP; and b) correlation with electricity consumption as the independent variable against GDP.
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Fig. 3. a) correlation with water withdrawals the independent variable against food production; b) correlation with water withdrawals as the independent variable against electricity
consumption; and c) correlation with electricity consumption as the independent variable against food production.

Fig. 4. Multispatial convergence cross mapping results for a) GDP and water withdrawals; b) GDP and food production; c) GDP and electricity consumption; and d) food production and
electricity consumption. Rho values (y-axis) represent relative strength of causal influence. L (x-axis) indicates the length of the data series.
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suggesting a stronger causal connection. GDP and electricity con-
sumption are shown to be very tightly coupled, with strong causal in-
fluence (Fig. 4c). The very rapid rise to stability could indicate syn-
chrony (Sugihara et al., 2012), which refers to a situation when one
variable is so dominant that the other variable’s behaviour is forced to
follow it. Thus, there is no true two-way coupling, but a dominant
driving mechanism in the system. Water withdrawals influence food
production more than the other way round, while there is little differ-
ence in casual strength between water withdrawals and electricity
consumption, indicating potentially strong coupling. The relationship
between food production and electricity consumption shows asym-
metry (Fig. 4d), with electricity consumption ‘causing’ changes in food
production more than the other way round. The rho values are low,
especially in the food→ electricity direction, suggesting relatively weak
coupling between these sectors.

Unravelling such causal connections is extremely difficult. In the
energy⟵→ food case, it may seem intuitive that the dominant rela-
tion should be opposite to that found here. However, a growth in en-
ergy availability can drive food production in a number of ways in-
cluding: i) reducing the human burden of agriculture, allowing more to
be produced in a given time and over a given area by using electrical
and/or mechanical energy; ii) energy allows for scale efficiency in
agriculture, and can make agricultural processes more efficient; and iii)
energy can be used for lighting and pumping water, greatly improving
yields, cropped area and artificially lengthening growing seasons (e.g.
greenhouses). There is of course a two-way relationship (more food
production requires more energy), but it is suggested that the energy→
food direction is dominant (Fig. 4d).

3.4. Quantifying the WEF-GDP system: historical validation

Results for the replication of the WEF-GDP system from 1961 to
2013 show reasonable agreement with historical observations (Fig. 5).
The mean and median of the simulations are in agreement with his-
torical values of total global water withdrawal, food production, elec-
tricity consumption and GDP (RMSE values of simulated data versus
historical data are 1.9, 1.9, 0.4 and 1.6 for water, energy, food and GDP
respectively). Electricity consumption and GDP are consistently over-
estimated (model mean and median), but are well within percentile
limits. Water withdrawals are also overestimated, but not to the extent
of energy and GDP. The difference between simulated and observed
GDP values decreases over time. It is worth pointing out that the ob-
served points are global aggregations of the national data for each year,
thereby removing national-level variability. There is considerable
variability around mean and median values when this variability is
accounted for (10th and 90th percentile lines in Fig. 5). Accounting for
this variability is important for tracking potential future trajectories of
this system, and for recognising the vast difference between nations and
regions.

3.5. Future pathways

Fig. 6 shows future projections of the water withdrawal and GDP
sectors based on the GDP growth scenarios described in the Data and
Methods section. The direction of growth and the magnitude of change
are clearly guided by the forced changes to the GDP between 2020 and
2100. For example Scenarios 5 and 6 show decreasing trends in WEF
sectors, while there are strong increases in Scenarios 4 and 7. These
general trends are discussed in the next section. The variable amounts
of scatter in the simulated data are the result of the pseudo-random
Monte-Carlo sampling approach adopted in the SD modelling – no two
runs produce identical results (i.e. there is no set seed in the SDM si-
mulations).

4. Discussion

4.1. Correlation and causation

Results show strong correlation and causal influence between many

Fig. 5. Simulated figures compared with historical observations for a) total global water
withdrawals; b) total global net electricity consumption; c) total global food production;
and d) total global GDP. Blue dots represent historical observations, grey dots are si-
mulated values (100 values for every year), red line indicates model average values, blue
line indicates model median values and the red shaded area indicates the 10th (lower)
and 90th (upper) percentiles of the simulations. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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of the sectors. For the correlation between GDP and water withdrawals,
higher GDP countries generally withdraw more water. Reasons for the
variability in this relationship could include countries with lower GDP
(potentially ‘less well’ developed) being more reliant on inefficient ir-
rigation methods (leading to greater inter-annual variability in water
demand for example) or higher GDP countries having large service
sectors (with lower water demand than agriculture and more constant
demand between years) and efficient water distribution systems,
meaning lower variability in water withdrawals. It is acknowledged
that GDP is also related to the size of the population, so GDP and ‘de-
veloped’ do not correspond exactly. Likewise, GDP and food show
moderate correlation with variability. It is possible that lower GDP
countries reliant on agricultural practices that result in lower yields and
with greater inter-annual variability in production, while high pro-
duction totals may result from compensation for inefficiencies in sto-
rage and distribution, or as a result on large quantities produced for

export. Inefficient agricultural systems and/or unfavourable climatic
and soil conditions could lead to low and variable yields and production
totals. Higher GDP countries may be more reliant on service industries
and import from lower income countries, having lower endogenous
food production totals, or may produce large volumes for export in very
efficient and/or intensive systems with lower variability in production
(e.g. The Netherlands). When water withdrawal was correlated to food
production, although the correlation was fairly strong, the relationship
appears to strengthen at higher values of water withdrawal. One pos-
sible explanation is that nations with higher water withdrawal are,
generally, wealthier in terms of GDP (shown in the correlation of water
withdrawal and GDP). Agricultural practices in wealthy countries may
be more efficient (e.g. The Netherlands) while lower income nations
may be more reliant on traditional irrigation methods and cropping
practices which are more exposed to local climatic conditions, with
greater variability in food production. Another possibility is that higher

Fig. 6. Global projections of total water withdrawals and GDP under scenarios 1–7 (a, c, e, g, i, k, m and b, d, f, h, j, l, n respectively). See Data and Methods section for details about the
growth scenarios. Blue dots represent historical observations, grey dots are simulated values (there are 100 values for every year), red line indicates model average values, blue line
indicates model median values and the red shaded area indicates the 10th (lower) and 90th (upper) percentiles of the simulations. For water withdrawals, the log-axis masks the historical
trend, which changed from 713 km3 yr−1 in 1975–1873 km3 yr−1 in 2000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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volumes of food production generally require higher water require-
ments, although this can be mediated to some extent by improvements
in water use efficiency, The Netherlands being a case in point. While
this may explain the correlation between increased food production and
water withdrawals, it does not explain the stronger relationship (i.e.
less scatter around the regression line) at higher water withdrawal
values (i.e. higher-GDP nations), which is related to lower variability in

production and water withdrawals. When food production and elec-
tricity consumption are correlated, considerable variability is shown,
possibly suggesting a weaker ‘nexus’ connection between these sectors
at national level.

Causal analysis shows which variable pairs are subject to stronger or
weaker causal interaction, and which direction of causality is stronger,
if any. The GDP-water and GDP-food correlations had similar

Fig. 6. (continued)
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correlation coefficients (c. 0.55) but show different apparent causal
behaviour, demonstrating that correlation does not imply causality.
GDP and electricity are strongly correlated and show strong causal in-
fluence. Similarly, water and food are shown to be strongly correlated
and exhibit strong bi-directional causal influence. Electricity and food
are weakly correlated and show considerable asymmetry in the causal
relationships. Some of the causal analyses show very rapid rise in the
‘rho’ value, meaning that either: i) there is a strong bi-directional causal
influence between the two sectors or; ii) the system is subject to syn-
chrony. It is not possible to determine which of these possibilities is
correct. This analysis does indicate those sectors that appear to have
strong bi-directional causal influence (such as GDP and electricity) and
those where the causality in one direction is strong than the other.

4.2. Towards quantifying the global WEF-economic system

The work presented in this paper quantifies the previously quali-
tative WEF framework (Fig. 1), and allows for the questions in the In-
troduction to be answered, at least at the global level. Fig. 1 is updated
in Fig. 7, with each WEF-GDP link now quantified. With respect to
historical observation, model simulations show reasonable agreement
although electricity consumption and GDP, and water to a lesser extent,
are overestimated (model mean and median; Fig. 5) at the globally-
aggregated level. Model performance is good considering the vast
complexity of this system. The overestimation in the electricity sector is
c. 2–3 orders of magnitude (Fig. 5b), with a similar level of over-
estimation for GDP (Fig. 5d). As the observations are consistently
overestimated over time, bias-correction could be employed to force
model results to better fit the data. It was chosen not to do this in order
to show raw simulation results.

Future projections depend strongly on the GDP growth scenario (see
Data and Methods section and Fig. 6). Across all sectors, scenarios four
and seven show the greatest growth while scenario six shows the
greatest contraction (on average). These projections could have im-
portant implications regarding resource consumption, especially if re-
source consumption is as closely related to GDP as is suggested in this

work. Considering water withdrawals, Steffen et al. (2015) place the
‘safe planetary boundary’ for water withdrawals at 4000 km3 yr−1,
which is suggested as the maximum volume of water that can be
withdrawn globally without causing potentially irreparable damage to
the resource and associated ecosystem services (the current global es-
timate is c. 2600 km3 yr−1). In this context, the projections in this paper
give a view of how likely this threshold may be exceeded by the end of
the century. The threshold value of 4000 km3 yr−1 is exceeded in 48%
of results (out of 13900 in total – 100 simulations over 139 years) in
scenario 5, but by as much as 61% in scenario 1. These values must be
taken in the context of the variability that is accounted for in the si-
mulations. Considering simulation means in 2017, in scenario 5 the
model mean is 2900 km3 yr−1 (close to the estimate of Steffen et al.,
2015), while in 2100 it is 2700 km3 yr−1, the decrease being driven by
the negative GDP growth. Conversely, in scenario 1 in 2017, the model
mean is 3700 km3 yr−1, close to the 3200 km3 yr−1 of Hanasaki et al.
(2013a,b), and to the 4000 km3 yr−1 of Wada and Bierkens (2014), and
by 2100 it is 6700 km3 yr−1 which is slightly higher than the c.
6000 km3 yr−1 estimated by Wada and Bierkens (2014) and Hanasaki
et al., (2013a,b), but well below the estimate of Hejazi et al. (2014);
13300 km3 yr−1 in 2095) who overestimate water withdrawals com-
pared with other studies. All exceedance values reported here are
higher than those in Sušnik (2015), who took a more simplistic ap-
proach to modelling the WEF system, not accounting for inter-sectoral
linkages. This work implies that neglecting these interlinkages could
lead to over-/underestimation of potential water resource consumption
globally. Considering the very different approaches to deriving future
estimates, this study, and the cited studies all suggest that by the end of
this century, humanity will likely be exceeding what is considered a
sustainable level of water withdrawals globally.

For net electricity consumption, the US Energy Information
Administration has derived a recent set of future projections to 2050
(EIA, 2017; dataset available at https://www.eia.gov/analysis/projec-
tion-data.cfm). In 2017, the EIA (2017) estimates total global net
electricity consumption at c. 37100× 109 kWh. The SD model means in
2017 range from 570000× 109 to 1900000×109 kWh (scenarios 2

Fig. 7. The quantified WEF-GDP system.
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and 1 respectively), reflecting the overestimation of model results for
this sector (Fig. 5). In 2050, the EIA estimate global electricity con-
sumption at c. 45000×109 kWh, with the SD model estimates in 2050
ranging from 237000×109 to 6400000×109 kWh (scenarios 6 and 7
respectively). It is noted that there is considerable variability around
these mean values as a consequence of the Monte-Carlo sampling
(Fig. 5) and that the GDP scenario drives the overall trend of electricity
consumption. Even though this model overestimates electricity gen-
eration, demand (and therefore generation) will increase to the end of
the century, leading to an increase in CO2e emissions and concomitant
climate impacts, unless there is a drastic improvement in generating
efficiencies, or a significant and rapid switch towards low/zero fossil-
fuel based generating technologies, for which there is significant global
potential (Deng et al., 2015; Possner and Caldeira, 2017).

For global food production, the Food and Agricultural Organisation
(FAO) of the United Nations have developed a series of production
estimates to 2050 (Alexandratos and Bruisma, 2012; FAO, 2017). In
2013, the total global crop production in the FAOSTAT database (see
Sušnik, 2015 for the crops included in this category) was
5080×109 kg. In the same year, model means in this study range from
1450×109 to 4158×109 kg, thereby slightly underestimating the
FAOSTAT total. By 2050, FAO estimate that the required global food
production to meet estimated demand will be 7548× 109 kg (FAO,
2017). Using a different method based on average annual food pro-
duction growth rates between 2007 and 2050, Alexandratos and
Bruisma (2012) estimate total global food production in 2050 as
7147×109 kg. By 2050, this work estimates global food production
between 1680×109 (scenario 5) and 7120× 109 kg (scenario 1). This
leads to the possible suggestion that if global GDP shrinks, there could
be a large impact on global food production. Given that at present
around 795 million people are malnourished (FAO, 2017), and with this
expected to remain a global challenge to 2050, any potential drop in
overall production (possibly linked to economic performance) could be
damaging to the lives of millions of people. Maintaining, and poten-
tially increasing yields, perhaps through intensification or through a
considerable reduction in wastage, is therefore paramount. It is essen-
tial to decouple food production from GDP. However this may only be
possible for crops with lower commercial value.

Throughout this work, a number of assumptions and shortcomings
are recognised. First, the analysis is at global level and as such national
and regional differences and variations are unaccounted for in detail,
although variability is captured in the best-fit distribution and sampling
approaches. A future avenue for research is to carry out a similar
analysis at national or regional resolution. This will help characterise
global hotspots of critical resource use, and will better define the
variability at the global level. This will allow for regional and ‘cluster’
(e.g. OECD-countries) comparisons. Second, while the model in-
corporates water, energy, food and GDP in an integrated manner, other
sectors are neglected including the climate sector, an explicit re-
presentation of socio-economic-political developments (see the next
point), and the influence of technological developments and human
‘capital’ as drivers of the GDP system. All these issues are likely to play a
crucial role in future resource use and consumption patterns. Third,
although GDP is integrated within the model and estimated as part of it,
the GDP values in the future scenarios were also forced by potential
long-term directions of GDP growth. The assumption is that GDP ac-
counts for socio-economic developments in the broadest sense. After
2018, the direction of GDP (socio-economic) growth is determined by
the growth scenarios and is not endogenously derived. The assumption
is that in some way GDP (growth) drives the WEF system. Fourth, this
study assumes stationarity of this global system. That is, it is assumed
that the relationships identified between the WEF-GDP sectors for the
last c. 50 years will continue to hold, broadly speaking, over the coming
50 years and beyond. Given that global change is advancing at ever-
greater rates, this may not necessarily be the case, and abrupt as-yet
unknown transitions (‘phase’ or ‘critical’ transitions; Scheffer, 2009) in

the system could occur. In the absence of knowing for certain when,
how, and to what extent change will take place, assuming system-wide
stationarity is a reasonable first approximation. The seven GDP sce-
narios act to partially capture most likely global-scale trajectories of
socio-techno-political-economic development in a broad sense.

Despite the shortcomings and assumptions, this work has advanced
previous efforts by integrating water, energy, food and GDP in an in-
tegrated and consistent modelling and analysis framework. It uses
freely-available, widely recognised global datasets as the fundamental
basis on which analyses are carried out, avoiding prohibitively ex-
pensive proprietary data or software. It provides a platform on which to
build, allowing this work to be refined in the future to be more com-
prehensive and account for more sectors, influences and interactions
(e.g. zooming in to national-level analysis; analysing the influence of
human capital and technological progress on wealth and GDP). While
there is potential for improvement, this work takes a considerable step
towards quantitative modelling of the global water-energy-food-eco-
nomic system, something that until now has largely been a qualitative
exercise, or which has considered only one or two sectors.

5. Conclusions

There is increasing interest in the global water-energy-food system,
and how it relates to the global economy. Studies have investigated
aspects of this system using different methodologies and datasets.
Despite growing efforts, there remain a number of shortcomings in-
cluding: not incorporating all WEF-GDP sectors; inconsistency between
data; and inconsistency between modelling approaches. These short-
comings mean it can be hard to identify system-wide impacts, and can
make comparisons between studies difficult. This work sets out a global
scale analysis of the WEF-GDP system, using consistent, widely re-
cognised datasets for each sector, and integrating the sectors into a
single, coherent analysis and modelling framework, offering con-
sistency where it has been previously lacking. Correlative and causal
analysis suggests historical links between the WEF-GDP sectors with
varying strength. Subsequent causal analysis revealed that ‘correlation
does not imply causation’. For example GDP is more strongly correlated
to water withdrawals than food production, but causal analysis suggests
that the food-GDP sectors have stronger causal influence than the cor-
relation suggests. There are noticeable asymmetries in causality, for
example between the food production and electricity consumption
sectors. Following initial analysis, a system dynamics modelling ap-
proach was used to represent the WEF-GDP system in an integrated
framework with a pseudo-random Monte-Carlo sampling approach
adopted to characterise variability in the global system. Historical va-
lues of WEF-GDP sectors were estimated reasonably well given the
complexity of the system and the assumptions and simplifications made
in this study. Electricity consumption and GDP were consistently
overestimated, something that could be addressed with bias-correction.

Future trajectories of the WEF-GDP system were assessed with seven
GDP growth scenarios aimed at covering a range of potential socio-
economic developments to 2100. Trajectories of WEF-GDP sectors de-
pend strongly on the GDP growth scenario. WEF sector projections are
compared with those from other studies. Water withdrawals are close to
other values estimated by 2100 and suggest that humanity is at risk of
exceeding the ‘safe operating space’ of humanity, something echoed by
other studies. Food production estimates are close to other studies by
2050, while electricity consumption estimates are overestimated. It is
suggested that water withdrawals and food production should be de-
coupled from GDP and similar economically-based performance in-
dicators.

Future work could involve a national-level re-analysis to be able to
compare nations, regions and country-clusters (i.e. OECD nations), and
could attempt to incorporate other factors such as human capital and
the influence of technological progress, although these latter develop-
ments could take a considerable effort. This work is a valuable early
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step in providing a quantitative modelling framework to the previously
qualitative descriptions of the water-food-energy-economic system, and
offers a consistent platform on which to build.
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